Все своими руками

Единицы твердости металлов перевод

Единицы твердости металлов перевод

Таблица перевода единиц твердости HRC, HRA, HB, HV

Горизонтальное прокручивание таблицы на смартфонах

Роквелл Бринелль Виккер с Шор На разрыв
HRA HRC HB (3000H) Диаметр отпечатка, мм HV HSD Н/мм ²
89 72 782 2.20 1220
86.5 70 1076 101
86 69 744 2.25 1004 99
85.5 68 942 97
85 67 713 2.30 894 95
84.5 66 854 92
84 65 683 2.35 820 91
83.5 64 789 88
83 63 652 2.40 763 87
82.5 62 739 85
81.5 61 627 2.45 715 83
81 60 695 81 2206
80.5 59 600 2.50 675 80 2137
80 58 2.55 655 78 2069
79.5 57 578 636 76 2000
79 56 2.60 617 75 1944
78.5 55 555 598 74 1889
78 54 2.65 580 72 1834
77.5 53 532 562 71 1772
77 52 512 2.70 545 69 1689
76.5 51 495 2.75 528 68 1648
76 50 513 67 1607
75.5 49 477 2.80 498 66 1565
74.5 48 460 2.85 485 64 1524
74 47 448 2.89 471 63 1496
73.5 46 437 2.92 458 62 1462
73 45 426 2.96 446 60 1420
72.5 44 415 3.00 435 58 1379
71.5 42 393 3.08 413 56 1317
70.5 40 372 3.16 393 54 1255
38 352 3.25 373 51 1193
36 332 3.34 353 49 1138
34 313 3.44 334 47 1076
32 297 3.53 317 44 1014
30 283 3.61 301 42 965
28 270 3.69 285 41 917
26 260 3.76 271 39 869
24 250 3.83 257 37 834
22 240 3.91 246 35 793
20 230 3.99 236 34 752

Твердость по Роквеллу

Вдавливание алмазного конуса с углом 120° при вершине и замер относительной глубины погружения в исследуемый материал.

Шкала А — нагрузка 60 кгс, для карбида вольфрама (ВК)

Шкала С — нагрузка 150 кгс, для твердых сталей HRB>100

Преимущество — простота. Недостаток — низкая точность.

Твердость по Бринеллю

Диаметр отпечатка металлического шарика в материале.

Недостаток — твердость до 450HB.

Твердость по Виккерсу

Площадь отпечатка от алмазной пирамидки.

Твердость по Шору

Отскок шарика от поверхности в склероскопе (метод отскока). Очень простой и удобный метод.

Определение твердости материала является важной частью технологического процесса изготовления деталей любой сложности.

Различные методы поиска твердости металла связанны в первую очередь с отличием их структуры и формы. Поработать с обычной заготовкой в форме болванки не составит труда, вот для листового материала нужен особый подход, учитывая его небольшую толщину.

Лишь с помощью метода Виккерса удобнее всего искать твёрдость азотированных и цементированных поверхностей.

Расчет ресурса работы металлорежущего инструмента, его долговечность, всегда производится в первую очередь с учетом табличных показателей.

Именно благодаря повышенной твердости (около 71 HRC) твердосплавные сверла и фрезы из сплава ВК8 позволяют обрабатывать сверхтвердые материалы.

Твердость – главный показатель качества инструмента

Выбирая инструмент для работы, мы сталкиваемся с такой его характеристикой как твердость, которая характеризует его качество. Чем выше этот показатель, тем выше его способность сопротивляться пластической деформации и износу при воздействии на обрабатываемый материал. Именно этот показатель определяет, согнется ли зуб пилы при распиловке заготовок, или какую проволоку смогут перекусить кусачки.

Метод Роквелла

Среди всех существующих методов определения твердости сталей и цветных металлов самым распространенным и наиболее точным является метод Роквелла.

Метод Роквелла — определение твердости металла

Проведение измерений и определение числа твердости по Роквеллу регламентируется соответствующими документами ГОСТа 9013-59. Этот метод реализуется путем вдавливания в тестируемый материал инденторов – алмазного конуса или твердосплавного шарика. Алмазные инденторы используются для тестирования закаленных сталей и твердых сплавов, а твердосплавные шарики – для менее твердых и относительно мягких металлов. Измерения проводят на механических или электронных твердомерах.

Методом Роквелла предусматривается возможность применения целого ряда шкал твердости A, B, C, D, E, F, G, H (всего – 54), каждая из которых обеспечивает наибольшую точность только в своем, относительно узком диапазоне измерений.

Для измерения высоких значений твердости алмазным конусом чаще всего используются шкалы «А», «С». По ним тестируют образцы из закаленных инструментальных сталей и других твердых стальных сплавов. А сравнительно более мягкие материалы, такие как алюминий, медь, латунь, отожженные стали испытываются шариковыми инденторами по шкале «В».

Пример обозначения твердости по Роквеллу: 58 HRC или 42 HRB.

Впереди стоящие цифры обозначают число или условную единицу измерения. Две буквы после них – символ твердости по Роквеллу, третья буква – шкала, по которой проводились испытания.

(!) Два одинаковых значения от разных шкал – это не одно и то же, например, 58 HRC ≠ 58 HRA. Сопоставлять числовые значения по Роквеллу можно только в том случае, если они относятся к одной шкале.

Диапазоны шкал Роквелла по ГОСТ 8.064-94:

A 70-93 HR
B 25-100 HR
C 20-67 HR

Слесарный инструмент

Инструменты для ручной обработки металлов (рубка, резка, опиливание, клеймение, пробивка, разметка) изготавливают из углеродистых и легированных инструментальных сталей. Их рабочие части подвергают закаливанию до определенной твердости, которая должна находиться в пределах:

Ножовочные полотна, напильники 58 – 64 HRC
Зубила, крейцмессели, бородки, кернеры, чертилки 54 – 60 HRC
Молотки (боек, носок) 50 – 57 HRC

Монтажный инструмент

Сюда относятся различные гаечные ключи, отвертки, шарнирно-губцевый инструмент. Норму твердости для их рабочих частей устанавливают действующие стандарты. Это очень важный показатель, от которого зависит, насколько инструмент износостоек и способен сопротивляться смятию. Достаточные значения для некоторых инструментов приведены ниже:

Гаечные ключи с размером зева до 36 мм 45,5 – 51,5 HRC
Гаечные ключи с размером зева от 36 мм 40,5 – 46,5 HRC
Отвертки крестовые, шлицевые 47 – 52 HRC
Плоскогубцы, пассатижи, утконосы 44 – 50 HRC
Кусачки, бокорезы, ножницы по металлу 56 – 61 HRC

Металлорежущий инструмент

В эту категорию входит расходная оснастка для обработки металла резанием, используемая на станках или с ручными инструментами. Для ее изготовления используются быстрорежущие стали или твердые сплавы, которые сохраняют твердость в холодном и перегретом состоянии.

Метчики, плашки 61 – 64 HRC
Зенкеры, зенковки, цековки 61 – 65 HRC
Сверла по металлу 63 – 69 HRC
Сверла с покрытием нитрид-титана до 80 HRC
Фрезы из HSS 62 – 66 HRC


Примечание:
Некоторые производители фрез указывают в маркировке твердость не самой фрезы, а материала, который она может обрабатывать.

Крепежные изделия

Существует взаимосвязь между классом прочности крепежа и его твердостью. Для высокопрочных болтов, винтов, гаек эта взаимосвязь отражена в таблице:

Если для болтов и гаек главной механической характеристикой является класс прочности, то для таких крепежных изделий как стопорные гайки, шайбы, установочные винты, твердость не менее важна.

Стандартами установлены следующие минимальные / максимальные значения по Роквеллу:

Стопорные кольца до Ø 38 мм 47 – 52 HRC
Стопорные кольца Ø 38 -200 мм 44 – 49 HRC
Стопорные кольца от Ø 200 мм 41 – 46 HRC
Стопорные зубчатые шайбы 43.5 – 47.5 HRB
Шайбы пружинные стальные (гровер) 41.5 – 51 HRC
Шайбы пружинные бронзовые (гровер) 90 HRB
Установочные винты класса прочности 14Н и 22Н 75 – 105 HRB
Установочные винты класса прочности 33Н и 45Н 33 – 53 HRC

Относительное измерение твердости при помощи напильников

Стоимость стационарных и портативных твердомеров довольно высока, поэтому их приобретение оправдано только необходимостью частой эксплуатации. Многие мастеровые по мере надобности практикуют измерять твердость металлов и сплавов относительно, при помощи подручных средств.

Измерение твердости при помощи напильников

Опиливание образца напильником – один из самых доступных, однако далеко не самый объективный способ проверки твердости стальных деталей, инструмента, оснастки. Напильник должен иметь не затупленную двойную насечку средней величины №3 или №4. Сопротивление опиливанию и сопровождающий его скрежет позволяет даже при небольшом навыке отличить незакаленную сталь от умеренно (40 HRC) или твердо закаленной (55 HRC).

Для тестирования с большей точностью существуют наборы тарированных напильников, именуемые также царапающий твердомер. Они применяются для испытания зубьев пил, фрез, шестерен. Каждый такой напильник является носителем определенного значения по шкале Роквелла. Твердость измеряется коротким царапанием металлической поверхности поочередно напильниками из набора. Затем выбираются два близко стоящие – более твердый, который оставил царапину и менее твердый, который не смог поцарапать поверхность. Твердость тестируемого металла будет находиться между значениями твердости этих двух напильников.

Переводная таблица твердости

Для сопоставления чисел твердости Роквелла, Бринелля, Виккерса, а также для перевода показателей одного метода в другой существует справочная таблица:

Виккерс, HV Бринелль, HB Роквелл, HRB
100 100 52.4
105 105 57.5
110 110 60.9
115 115 64.1
120 120 67.0
125 125 69.8
130 130 72.4
135 135 74.7
140 140 76.6
145 145 78.3
150 150 79.9
155 155 81.4
160 160 82.8
165 165 84.2
170 170 85.6
175 175 87.0
180 180 88.3
185 185 89.5
190 190 90.6
195 195 91.7
200 200 92.8
205 205 93.8
210 210 94.8
215 215 95.7
220 220 96.6
225 225 97.5
230 230 98.4
235 235 99.2
240 240 100

Виккерс, HV Бринелль, HB Роквелл, HRC
245 245 21.2
250 250 22.1
255 255 23.0
260 260 23.9
265 265 24.8
270 270 25.6
275 275 26.4
280 280 27.2
285 285 28.0
290 290 28.8
295 295 29.5
300 300 30.2
310 310 31.6
320 319 33.0
330 328 34.2
340 336 35.3
350 344 36.3
360 352 37.2
370 360 38.1
380 368 38.9
390 376 39.7
400 384 40.5
410 392 41.3
420 400 42.1
430 408 42.9
440 416 43.7
450 425 44.5
460 434 45.3
470 443 46.1
490 47.5
500 48.2
520 49.6
540 50.8
560 52.0
580 53.1
600 54.2
620 55.4
640 56.5
660 57.5
680 58.4
700 59.3
720 60.2
740 61.1
760 62.0
780 62.8
800 63.6
820 64.3
840 65.1
860 65.8
880 66.4
900 67.0
1114 69.0
1120 72.0


Примечание:
В таблице приведены приближенные соотношения чисел, полученные разными методами. Погрешность перевода значений HV в HB составляет ±20 единиц, а перевода HV в HR (шкала C и B) до ±3 единиц.

При выборе инструмента желательно предпочесть модели известных производителей. Это дает уверенность в том, что приобретаемый продукт изготовлен с соблюдением технологий, а его твердость отвечает заявленным значениям.

Соотношение твердости по Роквеллу и Бринеллю различных изделий.

Единицы твердости металлов перевод

  • Продукция
    • Стальное литьё
      • Чертежи (Сталь)
      • Чертежи (Марганцовистая сталь)
      • Марганцовистая сталь
      • Жаропрочная сталь
      • Сталь для отливок
      • Конструкционная легированная сталь
      • Легированная сталь
      • Углеродистая сталь
    • Чугунное литьё
      • Чертежи (Чугун)
      • Чугун
      • Хромистый чугун
      • Чушковой чугун
      • Тюбинги
      • Чугунные утяжелители кольцевые (УЧК)
      • Корпуса
    • Художественное литьё
      • Художественное литьё
      • Парковое литьё
    • ЛГМ
    • Литьё
    • Лаборатория
    • Обрубка
    • Термическая обработка
    • Механическая обработка
    • Видео
  • Продукция
    • Стальное литьё
      • Чертежи (Сталь)
      • Чертежи (Марганцовистая сталь)
      • Марганцовистая сталь
      • Жаропрочная сталь
      • Сталь для отливок
      • Конструкционная легированная сталь
      • Легированная сталь
      • Углеродистая сталь
    • Чугунное литьё
      • Чертежи (Чугун)
      • Чугун
      • Хромистый чугун
      • Чушковой чугун
      • Тюбинги
      • Чугунные утяжелители кольцевые (УЧК)
      • Корпуса
    • Художественное литьё
      • Художественное литьё
      • Парковое литьё

    Таблица соответствия HB — HRC

    Твердость по Бриннелю, НВ Твердость по Роквеллу, HRC
    207 18
    212 19
    217 20
    223 21
    229 22
    235 23
    241 24
    248 25
    255 26
    262 27
    269 28
    277 29
    286 30
    293 31
    302 33
    311 34
    321 35
    332 36
    340 37
    351 38
    364 39
    375 40
    387 41
    402 43
    418 44
    430 45
    444 47
    460 48
    477 49
    495 51
    512 52
    532 54
    555 56
    578 58
    600 59
    627 61
    652 63

    НВ — при применении стального шарика (для металлов и сплавов твердостью менее 450 единиц);

    HBW — при применении шарика из твер­дого сплава (для металлов и сплавов твердо­стью более 450 единиц).

    Символу НВ (HBW) предшествует число­вое значение твердости из трех значащих цифр, а после символа указывают диаметр шарика, значение приложенной силы (в кгс), продолжительность выдержки, если она отли­чается от 10 до 15 с.

    — алмазным конусом с общей нагрузкой 150 кгс. Твердость измеряется по шкале С и обозначается HRC (например, 65 HRC). Таким образом определяют твердость закаленной и отпущенной сталей, материалов средней твердости, поверхностных слоев толщиной более 0,5 мм;

    — алмазным конусом с общей нагрузкой 60 кгс. Твердость измеряется по шкале А, совпадающей со шкалой С, и обозначается HRA. Применяется для оценки твердости очень твердых материалов, тонких поверхностных слоев (0,3 … 0,5 мм) и тонколистового материала;

    Таблица перевода твердости металлов

    диапазоны шкал и их сравнение

    &nbsp Метод измерения твердости металлов по Бринеллю регламентирует ГОСТ 9012-59 (ИСО 6506-81. ИСО 410-82) (в редакции 1990 г.).

    Сущность метода заключается во вдавливании шарика (стального или из твердого сплава) в образец (изделие) под действием силы, приложенной перпендикулярно поверхности образца в течение определенного времени, и измерении диаметра отпечатка после снятия силы.

    Твердость по Бринеллю обозначают символом НВ или HBW.

    НВ – при применении стального шарика (для металлов и сплавов твердостью менее 450 единиц);
    HBW – при применении шарика из твердого сплава (для металлов и сплавов твердостью более 450 единиц).

    Символу НВ (HBW) предшествует числовое значение твердости из трех значащих цифр, а после символа указывают диаметр шарика, значение приложенной силы (в кгс). продолжительность выдержки, если она отличается от 10 до 15 с.

    250 НВ 5/750 – твердость по Бринеллю 250, определенная при применении стального шарика диаметром 5 мм при силе 750 кгс (7355 Н) и продолжительности выдержки от 10 до 15 с.

    575 HBW 2,5/187,5/30 – твердость по Бринеллю 575, определенная при применении шарика из твердого сплава диаметром 2,5 мм при силе 187,5 кгс (1839 Н) и продолжительности выдержки 30 с.

    При определении твердости стальным шариком или шариком из твердого сплава диаметром 10 мм при силе 3000 кгс (29420 Н) и продолжительности выдержки от 10 до 15 с твердость по Бринеллю обозначают только числовым значением твердости и символом НВ или HBW.

    Пример обозначения: 185 НВ, 600 HBW.

    &nbsp Метод измерения твердости черных и цветных металлов и сплавов при нагрузках от 9,807 Н (1 кгс) до 980,7 Н (100 кгс) по Виккерсу регламентирует ГОСТ 2999 – 75* (в редакции 1987 г.).

    Измерение твердости основано на вдавливании алмазного наконечника в форме правильной четырехгранной пирамиды в образец (изделие) под действием силы, приложенной в течение определенного времени, и измерении диагоналей отпечатка, оставшихся на поверхности образца после снятия нагрузки.

    Твердость по Виккерсу при условиях испытания – силовое воздействие 294.2 Н (30 кгс) и время выдержки под нагрузкой 10 . 15 с. обозначают цифрами, характеризующими величину твердости, и буквами HV.

    Пример обозначения: 500 HV – твердость по Виккерсу, полученная при силе 30 кгс и времени выдержки 10 . 15 с.

    При других условиях испытания после букв HV указывают нагрузку и время выдержки.

    Пример обозначения: 220 HV 10/40 – твердость по Виккерсу, полученная при силе 98,07 Н (10 кгс) и времени выдержки 40 с.

    Общего точного перевода чисел твердости, измеренных алмазной пирамидой (по Виккерсу), на числа твердости по другим шкалам или на прочность при растяжении не существует. Поэтому следует избегать таких переводов, за исключением частных случаев, когда благодаря сравнительным испытаниям имеются основания для перевода.

    &nbsp Метод измерения твердости металлов и сплавов по Роквеллу регламентирует ГОСТ 9013 – 59* (в редакции 1989 г.).

    Сущность метода заключается во внедрении в поверхность образца (или изделия) алмазного конусного (шкалы А. С. D) или стального сферического наконечника (шкалы В. Е. F. G. Н. К) под действием последовательно прилагаемых предварительной и основной сил и в определении глубины внедрения наконечника после снятия основной силы.

    Твердость по Роквеллу обозначают символом HR с указанием шкалы твердости, которому предшествует числовое значение твердости из трех значащих цифр.

    Пример обозначения: 61,5 HRC – твердость по Роквеллу 61,5 единиц по шкале С.

    СРАВНЕНИЕ ЧИСЕЛ ТВЕРДОСТИ МЕТАЛЛОВ И СПЛАВОВ
    ПО РАЗЛИЧНЫМ ШКАЛАМ

    СРАВНИТЕЛЬНАЯ ТАБЛИЦА ТВЕРДОСТИ
    по DIN 50150

    С целью обеспечения единства измерений введен государственный специальный эталон для воспроизведения шкал твердости Роквелла и Супер-Роквелла и передачи их при помощи образцовых средств измерений (рабочих эталонов) рабочим средствам измерений, применяемым в стране (ГОСТ 8.064 – 94).

    ДИАПАЗОНЫ ШКАЛ ТВЕРДОСТИ по РОКВЕЛЛУ и СУПЕР-РОКВЕЛЛУ,
    ВОСПРОИЗВОДИМЫХ ЭТАЛОНОМ по ГОСТ 8.064-94

    Твёрдость – это сопротивление тела внедрению индентора – другого твёрдого тела. Способы испытания твёрдости подразделяются на статические и динамические.

    К статическим относятся способы измерения твёрдости по Бринеллю, Викерсу, Роквеллу, Кнупу; к динамическим – способы измерения твёрдости по Шору, Шварцу, Бауману, Польди, Морину, Граве.

    Измерения твёрдости осуществляют при 20±10°С.

    Измерение твёрдости по Бринеллю

    Бринелля метод [по имени шведского инженера Ю.А.Бринелля (J.A.Brinell)] – способ определения твёрдости материалов вдавливанием в испытываемую поверхность стального закалённого шарика диаметром 2,5; 5 и 10 мм пр нагрузке P от 625 H до 30 кН. Число твёрдости по Бринеллю HB – отношение нагрузки (кгс) к площади (мм2) поверхности отпечатка. Для получения сопоставимых результатов относительной твёрдости материалы (HB свыше 130) испытывают при отношении P_D2=30, материалы средней твёрдости (HB 30-130) – при P_D2=10, мягкие (HB

    Метод измерения твердости металлов по Бринеллю регламентирует ГОСТ 9012-59 «Металлы. Метод измерения твердости по Бринеллю»: Стандарт устанавливает метод измерения твердости по Бринеллю металлов с твердостью не более 650 единиц. Сущность метода заключается во вдавливании шарика (стального или из твердого сплава) в образец (изделие) под действием усилия, приложенного перпендикулярно к поверхности образца, в течение определенного времени, и измерении диаметра отпечатка после снятия усилия. ГОСТ 9012-59, в частности, определяет требования, предъявляемые к отбору образцов металла для измерения твёрдости по Бринеллю – размер образцов, шероховатость поверхности и др.

    Измерение твёрдости по Роквеллу

    Роквелла метод [по имени американского металлурга С.Роквелла (S.Rockwell), разработавшего этод метод] – способ определения (измерения) твёрдости материалов (главным образом металлов) вдавливанием в испытываемую поверхность алмазного индентора с углом при вершине 120° (шкалы А и С) или стального закалённого шарика диаметром 1/16 дюйма или 1,588 мм (шкала B. Твёрдость по Роквеллу выражается в условных единицах. За единицу твёрдости принята величина, соответствующая перемещению индентора на 0,002 мм. Испытание методов Роквелла проводят на специальном настольном приборе, снабжённом индикатором, который показывает число твёрдости. ГОСТ 23677-79.

    Таблица соответствия HB – HRC (Перевод значений твёрдости)

    (соотношение твёрдости по Бриннелю твёрдости по Роквеллу,определяемых методами в соответствии с ГОСТ 8.064-79)

    Твердость по Роквеллу (эталонная)

    Твердость по Роквеллу

    Твердость по Бринеллю

    HRCэ

    HRC

    D=10мм HB

    Р=3000кг диаметр отпечатка в мм

    Купить РТМ 3-1947-91 — бумажный документ с голограммой и синими печатями. подробнее

    Распространяем нормативную документацию с 1999 года. Пробиваем чеки, платим налоги, принимаем к оплате все законные формы платежей без дополнительных процентов. Наши клиенты защищены Законом. ООО «ЦНТИ Нормоконтроль».

    Наши цены ниже, чем в других местах, потому что мы работаем напрямую с поставщиками документов.

    Способы доставки

    • Срочная курьерская доставка (1-3 дня)
    • Курьерская доставка (7 дней)
    • Самовывоз из московского офиса
    • Почта РФ

    Документ содержит соотношения между значениями твердости черных и цветных металлов и их сплавов, измеряемых методами по Бринеллю, Роквеллу, Супер-Роквеллу и Виккерсу.

    Оглавление

    Приложение 1. Поправки к значениям твердости по Супер-Роквеллу по шкале Nдля образцов с выпуклыми и вогнутыми поверхностями

    Приложение 2. Перевод чисел твердости HRCэ шкалы с Роквелла в числа твердости HRC шкалы с Роквелла

    Этот документ находится в:

    • Раздел: Строительство
    • Подраздел: Справочные документы
    • Подраздел: Директивные письма, положения, рекомендации и др.

    Организации:

    28.08.1991 Утвержден Министерство

    Нормативные ссылки

    • ГОСТ 1412-85Чугун с пластинчатым графитом для отливок. Марки
    • ГОСТ 15527-70Сплавы медно-цинковые (латуни), обрабатываемые давлением. Марки. Заменен на ГОСТ 15527-2004.
    • ГОСТ 493-79Бронзы безоловянные литейные. Марки
    • ГОСТ 613-79Бронзы оловянные литейные. Марки
    • ГОСТ 7293-85Чугун с шаровидным графитом для отливок. Марки
    • ГОСТ 4784-74Алюминий и сплавы алюминиевые деформируемые. Марки. Заменен на ГОСТ 4784-97.
    • ГОСТ 1583-89Сплавы алюминиевые литейные. Технические условия

    Чтобы бесплатно скачать этот документ в формате PDF, поддержите наш сайт и нажмите кнопку:

    РУКОВОДЯЩИЙ ТЕХНИЧЕСКИЙ МАТЕРИАЛ

    Конструкторские нормы МЕТАЛЛЫ И СПЛАВЫ Переводные таблицы твердости

    РУКОВОДЯЩИЙ ТЕХНИЧЕСКИЙ МАТЕРИАЛ

    Конструкторские нормы РТЫ 3-

    МЕТАДЛЫ И СПЛАШ 1947-91

    Переводные таблицы твердооти

    Дата введения 01.07.92

    Настоящий руководящий технический материал содержит соотношения между значениями твердости черных и цветных металлов и их сплавов, измеряемых методами по Бринеллю, Роквеллу, Супер-Роквеллу и Виккерсу.

    I. Соотношения между значениями твердости и временным сопротивлением разрыву должны соответствовать приведенным в табл.1.

    Значения чисел твердости по Роквеллу приведены для наконечника о алмазным конусом:

    по шкале С(НКСэ) при усилии 1471 Н (150 кгс); по шкале A(HRA) при усилии 588 Н (60 кгс).

    Значения чисел твердости по Роквеллу по шкале В (HRB) приведены для стального шарика диаметром D- 1,588 мм при усилии 981 Н (100 кгс).

    Значение чисел твердости по Супер-Роквеллу приведены для наконечника с алмазным конусом:

    по шкале VI5 (ШЯ5) при нагрузке 147 Н (15 кгс); по шкале V30 (HRA/30) при нагрузке 294 Н (30 кто);

    PTM 3- 1947-91 с. 2

    по шкале N45 (HRW45) при нагрузке 441 Н (45 кго).

    Значения чисел твердости по Бринеллю приведены для шарика диаметром D = 10 мм при усилии 29420 Н (3000 кгс):

    стального – при твердооти металлов менее 450 единиц (НВ); из твердого сплава – при твердости металла более 450 единиц (HBW) и продолжительности выдержки от 10 до 15 с.

    Значение чисел твердооти по Виккероу приведены при нагрузке 294 Н (30 кгс) и времени выдержки от 10 до 15 с.

    Временное сопротивление разрыву Ов ,Н (игс/м* 2 )

    Таблица соответствия шкал твердости /
    Hardness equivalent table

    Это устаревшая версия страницы сайта Lab2u.ru См.также /
    This page is old and not support See also :

    Справочная сравнительная таблица твердости по Виккерсу HV10 Бринелю НВ30 Роквеллу HRB HRC и предел прочности при растяжении N/mm2 85 81 410 270 91 87

    Справочная сравнительная таблица твердости по Виккерсу HV10 Бринелю НВ30 Роквеллу HRB HRC и предел прочности при растяжении N/mm2 85 81 410 270 91 87 490 290 97 92 534 310 100 95 562 320 107 101 602 340 113 107 634 360 118 112 660 380 121 116 674 390 128 122 704 410 132 125 718 420 138 131 741 440 143 136 762 460 147 140 775 470 153 146 797 490 157 149 807 500 163 154 825 520 168 160 845 540 172 163 854 550 178 169 868 570 184 175 880 590 187 178 887 600 193 184 902 620 200 190 915 640 205 195 925 660 208 198 932 670 212 201 937 680 222 211 954 710 225 214 960 720 228 217 964 730 233 222 972 750 236 225 192 760 243 231 210 780 250 238 222 800 255 242 231 820 258 245 237 830 265 252 248 850 272 258 258 870 275 261 264 880 280 266 271 900 287 273 280 920 293 278 288 940 295 280 297 950 302 287 300 970 308 293 308 990 314 299 315 1010 323 307 325 1040 336 319 339 1080 345 328 349 1110 355 338 360 1140 Тверд по Виккерсу HV30 Тверд по Бринелю2 НВ 30 Тверд по HRB Роквеллу31 HRC Предел прочн. при растяж. оВ N mm2 364 346 371 1170 373 355 381 1200 383 364 391 1230 391 372 399 1260 400 380 408 1290 410 390 418 1320 420 399 427 1350 429 408 434 1380 437 415 442 1410 443 421 447 1430 452 430 454 1460 455 457 1470 464 464 1500 473 471 1530 481 478 1560 489 483 1590 500 491 1630 509 497 1660 520 505 1700 528 510 1730 536 514 1760 547 521 1800 556 527 1830 567 534 1870 575 539 1900 586 544 1940 596 550 1980 607 556 2020 615 560 2050 629 567 2100 639 572 2140 650 578 2180 670 580 680 585 690 590 700 595 720 604 740 612 760 620 780 628 800 636 820 643 840 650 860 657 880 663 900 669 920 675 940 680 1) Все значения твердости установленные различными способами на различных материалах можно сравнивать лишь приблизительно; по DIN 50150. 2) Рассчитано исходя из HD 095 xHV. 3) Приводимые до одного знака после запятой значения по Роквеллу служат только для интерполяции и в результате должны округляться до целых чисел. 1658 Основной каталог 46

    Таблица соотношения твердости обрабатываемых материалов по различным шкалам Виккерс Бринелль НВ Роквелл Шор HS S МРа(1) Стандартный шарик D10(mm) Твер

    Таблица соотношения твердости обрабатываемых материалов по различным шкалам Виккерс Бринелль НВ Роквелл Шор HS S МРа(1) Стандартный шарик D10(mm) Твердосплавный шарик D10 (мм) HRA HRB HRC HRD 940 85.6 — 68.0 76.9 97 920 85.3 — 67.5 76.5 96 900 85.0 — 67.0 76.1 95 880 — (767) 84.7 — 66.4 75.7 93 860 — (757) 84.4 — 65.9 75.3 92 840 — (745) 84.1 — 65.3 74.8 91 820 — (733) 83.8 — 64.7 74.3 90 800 — (722) 83.4 — 64.0 74.8 88 780 — (710) 83.0 — 63.3 73.3 87 760 — (698) 82.6 — 62.5 72.6 86 740 — (684) 82.2 — 61.8 72.1 84 720 — (670) 81.8 — 61.0 71.5 83 700 — (656) 81.3 — 60.1 70.8 81 690 — (647) 81.1 — 59.7 70.5 — 680 — (638) 80.8 — 59.2 70.1 80 670 — 630 80.6 — 58.8 69.8 — 660 — 620 80.3 — 58.3 69.4 79 650 — 611 80.0 — 57.8 69.0 — 640 — 601 79.8 — 57.3 68.7 77 630 — 591 79.5 — 56.8 68.3 — 620 — 582 79.2 — 56.3 67.9 75 610 — 573 78.9 — 55.7 67.5 — 600 — 564 78.6 — 55.2 67.0 74 590 — 554 78.4 — 54.7 66.7 — 2055 580 — 545 78.0 — 54.1 66.2 72 2020 570 — 535 77.8 — 53.6 65.8 — 1985 560 — 525 77.4 — 53.0 65.4 71 1950 550 (505) 517 77.0 — 52.3 64.8 — 1905 540 (496) 507 76.7 — 51.7 64.4 69 1860 530 (488) 497 76.4 — 51.1 63.9 — 1825 520 (480) 488 76.1 — 50.5 63.5 67 1795 510 (473) 479 75.7 — 49.8 62.9 — 1750 500 (465) 471 75.3 — 49.1 62.2 66 1705 490 (456) 460 74.9 — 48.4 61.6 — 1660 480 488 452 74.5 — 47.7 61.3 64 1620 470 441 442 74.1 — 46.9 60.7 — 1570 460 433 433 73.6 — 46.1 60.1 62 1530 450 425 425 73.3 — 45.3 59.4 — 1495 440 415 415 72.8 — 44.5 58.8 59 1460 430 405 405 72.3 — 43.6 58.2 — 1410 420 397 397 71.8 — 42.7 57.5 57 1370 410 388 388 71.4 — 41.8 56.8 — 1330 100 379 379 70.8 — 40.8 56.0 55 1290 390 369 369 70.3 — 39.8 55.2 — 1240 380 360 360 69.8 (100.0) 38.8 54.4 52 1205 370 350 350 69.2 — 39.9 53.6 — 1170 360 341 341 68.7 (109.0) 36.6 52.8 50 1130 350 331 331 68.1 — 35.5 51.9 — 1095 340 322 322 67.6 (108.0) 34.4 51.1 47 1070 330 313 313 67.0 — 33.3 50.2 — 1035 Виккерс Бринелль НВ Роквелл Шор HS S 5 Э МРа(1) iff га О 5 Твердосплавный шарик D10(mm) HRA HRB HRC HRD 320 303 303 66.4 (107.0) 32.2 49.4 45 1005 310 294 294 65.8 — 31.0 48.4 — 980 300 284 284 65.2 (105.5) 29.8 47.5 42 950 295 280 280 64.8 — 29.2 47.1 — 935 290 275 275 64.5 (104.5) 28.5 46.5 41 915 285 270 270 64.2 — 27.8 46.0 — 905 280 265 265 63.8 (103.5) 27.1 45.3 40 890 275 261 261 63.5 — 26.4 44.9 — 875 270 256 256 63.1 (102.0) 25.6 44.3 38 855 265 252 252 62.7 — 24.8 43.7 — 840 260 247 247 62.4 (101.0) 24.0 43.1 37 825 255 243 243 62.0 — 23.1 42.2 — 805 250 238 238 61.6 99.5 22.2 41.7 36 795 245 233 233 61.2 — 21.3 41.1 — 780 240 228 228 60.7 98.1 20.3 40.3 34 765 230 219 219 — 96.7 (18.0) — 33 730 220 209 209 — 95.0 (15.7) — 32 695 210 200 200 — 93.4 (13.4) — 30 670 200 190 190 — 91.5 (11.0) — 29 635 190 181 181 — 89.5 (8.5) — 28 605 180 171 171 — 87.1 (6.0) — 26 580 170 162 162 — 85.0 (3.0) — 25 545 160 152 152 — 81.7 (0.0) — 24 515 150 143 143 — 78.7 22 490 140 133 133 — 75.0 21 455 130 124 124 — 71.2 20 425 120 114 114 — 66.7 — 390 110 105 105 — 62.3 100 95 95 — 56.2 95 90 90 — 52.0 90 86 86 — 48.0 85 81 81 — 41.0 Примечание параметры указанные в скобках применять только для сравнения. Index Таблица соответствия твердости Таблица соответствия твердости обрабатываемых материалов

    Таблица соответствия шкал твердости / Hardness equivalent table

    Почему важно измерять показатель?

    Твердость металлов — это показатель, который означает устойчивость стали к механическому воздействию других более твердых материалов. Оцениваются показатели в единицах твердости, на основе которых делается вывод о состоянии материала.

    Твердость металлов важно учитывать в большинстве видов работы с ними. Например, когда на производстве изготавливаются объемные конструкции с большим весом, где применяются несколько типов металлов, важно знать, что они будут оптимально взаимодействовать и успешно выдерживать большую нагрузку.

    Особо важно учитывать показатель твердости металла в следующих сферах:

    • Кораблестроительство;
    • Изготовление автомобилей;
    • Сборка самолетов;
    • Изготовление строительных материалов на основе металла и расходников.

    В любой из этих областей устойчивость к механическому воздействию определяет безопасность человека, возможность выполнить поставленную задачу и эксплуатационный срок.

    Для определения твердости в металл вдавливается индентор — тело, изготовленное из твердого сплава или алмаза, которое обладает наилучшим показателем сопротивления к механическим воздействиям. Чем большую силу вдавливания выдерживает металл, тем его твердость больше.


    Методы определения твердости металла

    Твердость
    — это способность металла сопротивляться проникновению в него другого, более твердого тела.

    Твердость металла

    является весьма важной характеристикой, так как тесно связана с такими основными характеристиками металлов и сплавов, как прочность, износостойкость и др.

    В настоящее время имеется много способов

    определения твердости металлов. Рассмотрим некоторые из них, наиболее широко применяемые в промышленности.

    Определение твердости вдавливанием стального шарика (метод Бринелля)

    Стальной шарик, изготовленный из закаленной шарикоподшипниковой стали, под действием усилия вдавливается в поверхность металла.

    С помощью специальной лупы измеряется диаметр лунки. По таблицам, приложенным к прибору, определяется значение твердости НЕ.

    Для испытания применяют специальный пресс типа Бринелля, внешний вид которого показан на рисунке

    Стальной шарик крепится в оправке2.

    Исследуемый образец ставится на предметный столик 1

    и поднимается к шарику штурвалом
    4.
    При включении мотора 5

    грузы пресса
    3
    опускаются и вдавливают стальной шарик в образец.

    Для стали значение твердости, определенное этим методом, связано с пределом прочности

    соотношением, которым на практике иногда пользуются:

    Определение твердости по глубине вдавливания алмазного конуса (метод Роквелла)

    Алмазный конус с углом при вершине 120° вдавливается в металл предварительной постоянной нагрузкой 10 кг,

    а затем полкой нагрузкой 60 или 150
    кг.
    Для испытания используют специальный пресс, внешний вид которого показан на рис. 25.

    Алмазный конус крепится в оправке 4.

    Образец устанавливается «на столик 3 и поднимается с помощью штурвала 2

    до нагрузки 10 кг.

    освобождает грузы
    6,
    которые создают усилие для вдавливания конуса в металл. Глубину вдавливания, т.е. значение твердости, отмечает индикатор
    5.
    Значения твердости

    этим методом определяются по разности глубины вдавливания алмазного конуса под действием полной и предварительной нагрузок.

    Чем тверже металл, тем на меньшую глубину проникает алмаз при вдавливании, тем больше будет число твердости.

    Стандартной нагрузкой при этом методе является 150 кг.

    Обозначается твердость НRC

    . В некоторых случаях, например при измерении твердости на тонком образце или при измерении твердости поверхностного слоя металла, нагрузку применяют
    до
    60
    кг.

    Измерение твердости мягких материалов

    На этом же приборе можно производить измерение твердости мягких материалов

    (цветные металлы, отожженная сталь).

    В этом случае используют стальной закаленный шарик диаметром 1,59 мм (1/16»). Стандартной нагрузкой является 100 кг,

    и величина твердости обозначается индексом НRB.

    Определение твердости динамическим вдавливанием шарика

    При изменении твердости массивных деталей

    и
    конструкций
    , когда нельзя использовать описанные выше приборы, применяют переносный прибор, показанный на рисунке:

    В прибор закладывают эталонный образец 1. При ударе по прибору молотком специальный шарик 2 наносит отпечатки на исследуемый предмет и эталонный образец, твердость которого известна.

    Сопоставляя значения диаметров лунок образца и детали по таблицам, определяют твердость детали.

    Определение твердости методом упругой отдачи

    В тех случаях, когда нельзя применять методы вдавливания, чтобы не испортить поверхности изделия, используется прибор, определяющий твердость металла методом упругой отдачи.

    На рисунке показан внешний вид прибора:

    С постоянной высоты на металл падает определенного веса боек и отскакивает

    . По величине отскока судят о твердости. Чем больше твердость, тем больше отскок бойка.

    Производительность этого метода испытаний очень велика

    (несколько сот измерений в час). Однако применять его можно
    только для сравнения
    между собой твердости изделий из
    одного и того же металла
    или из металлов, имеющих
    одинаковые
    упругие свойства.

    Прямые методы

    Классические способы измерения твердости представляют собой принципы, которые изобретались известными ученными и успешно проявляли себя в исследованиях на протяжении многих лет. Благодаря ним человечество сегодня имеет возможность пользоваться ископаемыми и успешно внедрять их в жизнь.

    В измерении принимают участие специальное оборудование, которое устанавливается стационарно и дает большую нагрузку на материал с помощью индентора.

    Способ Бринелля

    Твердость металла на основе этого принципа измеряется с помощью специального твердомера. К его оправке крепится индентор из алмаза или прочного сплава в форме шарика определенного диаметра. Под заданной нагрузкой шар воздействует на металл в течение установленного времени.

    После манипуляций на поверхности материала остается отпечаток индентора. На основе измерения его диаметра и площади выносится результат исследования и металлу присваивается определенный результат. Далее эта информация позволит успешно использовать материал или наоборот, убрать его из производства.

    Единственный недостаток такого метода — отсутствие мобильности оборудования для измерения. Исследования можно проводить только на месте. При установке учитывается уровень поверхности пола и другие показатели, которые могу влиять на результат эксперимента.

    Метод Роквелла

    Основа принципа проверки заключается на твердости, которая определяется различием между глубиной углубления индентора, а также остаточным показателем проникновения под установленной нагрузкой. При этом показатели измеряются при сохранении предварительной нагрузки.

    В методе исследования используется закаленный шарик или алмазный конус в качестве индентора. В отличие от предыдущего принципа, твердость исследуется на основе глубины лунки, а не ее площади.

    Показатель измеряется в результате вдавливания, что позволяет получить максимально точный результат. Нагрузка дается поэтапно, согласно государственным стандартам. Сначала дается небольшое воздействие, после чего основное усилие. Современные твердомеры измеряют различие между глубиной лунок, которые получаются после вдавливания наконечника под предварительным и основным усилием.

    Важно! При применении этого способа важно, чтобы на поверхности исследуемого материала не было трещин, окалин, выбоин и прочих повреждений, которые могут повлиять на правильность результата.

    Следует следить за перпендикулярностью нагрузки, а также устойчивостью металла на рабочей поверхности.

    Важно знать: Виды термической обработки

    Динамическое вдавливание

    Бывают случаи, когда необходимо проверить показатели металла, который используется в конструкции, а переносимого образца под рукой нет. Стационарные установки для этого не подходят, поэтому предыдущие методы отходят на второй план. На помощь приходит мобильный прибор, который изготовлен на основе государственного образца.

    Он представляет собой специальный молоточек и инструмент с шариком на конце. При ударе по прибору он оставляет следы на исследуемом материале. Также, следует провести аналогичные действия на эталонном образце, твердость которого уже известна.

    Далее проводится сравнение отпечатков, их глубины и площади, после чего выносится результат исследования. Однако специалисты рекомендуют проверять твердость металла перед тем, как использовать его в каких-либо конструкциях важного назначения.

    Принцип упругой отдачи

    Помимо проблем со стационарностью оборудования, возникают ситуации, когда необходимо проверить показатели металла без нанесения ему повреждений. Для этого применяется принцип упругой отдачи, с помощью которого измеряют твердость без вдавливания и других механических воздействий.

    На специальном приборе закрепляется шарик фиксированного веса на постоянной высоте. Далее он падает с нее на металл и отскакивает. Высота отскока прямо говорит о твердости. Чем больше отскок, не больше твердость металла. Производительность этого принципа является очень высокой, поэтому можно проводить около 100 измерений за один час.

    Однако рекомендуется применять метод только для сравнения твердости изделий из одного материала (металла), ведь показатели упругости также могут влиять на результат исследования и должны быть одинаковыми.

    Методы проверки твердости металлов

    Эксперты различают несколько вариантов проверок характеристики:

    • Согласно методу Бриннеля, в процессе проверки принимает участие стальной шарик. Его под большим давлением вдавливают в металлическую поверхность. Затем специальная лупа вступает в действие, и с ее помощью специалист замеряет диаметр лунки. Твердость определяется по табличным данным. Этот способ – первый метод определения характера металла. Так измеряются мягкие сплавы.
    • Методика Роквелла предполагает воздействие на металлическую поверхность с помощью алмазного конуса. В деле измерения твердости мягких, цветных, тонких Ме применяют специальный пресс. Его не относят к очень точным, хотя успешно он участвует для исследования твердых сплавов.
    • Аналогичные действия с предыдущим заложены в метод Викксера, предполагающий обращение к алмазной пирамиде, только угол вершины не 120, а 136 градусов. Нагрузка осуществляется в строго перпендикулярном виде к металлу и медленно увеличивается. Относится к высокоточным способам.
    • Способ Шора подразумевает наличие бойка с наконечником из алмазного напыления. Он падает с конкретной высоты на поверхность испытуемого материала. Твердость измеряется по высоте отскока бойка. Отличается эта методология большим разбросом показаний, по большей части применяется для измерения криволинейных предметов, крупногабаритных деталей.

    В домашних условиях показатель также измеряется, но ожидать высокой точности не стоит. При обращении к профессионалам можно получить высокоточный результат, и это ответственный момент. Некоторые проводят домашний ликбез по определению этой величины, используя обычную бутылку и царапая по ней металлическим предметом, например, лезвием ножа. Металл в 62 единицы легко царапает стекло, чего не сказать о 56 единицах.