Марганцовистые стали марки
1. МАРКИ
1.1. В зависимости от основного назначения и легирования сталь разделяется на группы:
А — сталь для металлических конструкций:
марганцовистая — 14Г, 19Г, 09Г2, 14Г2, 18Г2;
крешкемарганцовая — 12ГС, 16ГС, 17ГС, 09Г2С, 10Г2С1;
хромокремненикелевая с медью-15ХСНД, 10ХСНД.
Б — сталь для армирования железобетонных конструкций:
кремнемарганцовая — 35ГС, 18Г2С, 25Г2С;
хромомарганцовая с цирконием — 20ХГ2Ц;
1.2. Химический состав стали должен соответствовать нормам, указанным в табл. 1.
Химический состав в %
А. Сталь для металлических конструкций
Ванадий 0,05 — 0,10
Б. Сталь для армирования железобетонных конструкций
Цирконий 0,07 — 0,14
1. В обозначении марок стали двузначные цифры слева указывают (приблизительно) содержание углерода в сотых долях процента. Буквы справа от цифр обозначают: Г — марганец, С — кремний, X — хром, Н — никель, Д — медь, Ц — цирконий, Ф — ванадий. Цифры после букв указывают (приблизительно) процентное содержание соответствующего элемента в целых единицах.
2. Допускается технологическая добавка в стали титана из расчета его содержания в готовом прокате 0,01 — 0,03 %. В стали марки 80С технологическая добавка титана является обязательной из расчета его содержания в готовом прокате до 0,04 %.
1.3. В сталях группы А содержание фосфора должно быть не более 0,035 %, серы — не более 0,040 %.
В сталях группы Б содержание фосфора должно быть не более 0,040 %, серы — не более 0,045 %.
По требованию потребителя в стали группы А содержание серы должно быть не более 0,035 %.
1.4. По требованию заказчика, а также в случае применения при выплавке природно-легированных медью руд, стали марок 09Г2, 09Г2С, 10Г2С1 и 15ГФ поставляются с содержанием меди 0,15 — 0,30 %. В этом случае в наименование марки стали добавляется буква Д, а нормы механических свойств устанавливаются в соответствии с табл. 3.
При поставке стали марки 10Г2С1 с гарантированным содержанием меди допускается содержание кремния от 0,8 до 1,1 %.
1.5. По соглашению сторон в стали марки 14ХГС содержание марганца может быть снижено до 0,8 % и хрома до 0,40 %.
1.6. Содержание мышьяка в стали не должно превышать 0,08 %.
При выплавке стали из керченских руд допускается содержание мышьяка до 0,15 % при соответствующем снижении содержания фосфора на 0,005 % против установленной нормы.
1.7. В готовом прокате при условии обеспечения механических свойств стали допускаются отклонения по химическому составу, указанные в табл. 2.
Примечание . Сталь, имеющая иные отклонения по легирующим элементам (кремнию, марганцу, хрому, никелю, меди, ванадию, цирконию), может поставляться только с согласия заказчика.
2. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ
2.1. По форме, размерам, допускаемым отклонениям и состоянию поверхности сталь должна соответствовать:
группы А по размерам — ГОСТ 2590-71, ГОСТ 2591-71, ГОСТ 5681-57, ГОСТ 82-70, ГОСТ 8239-72, ГОСТ 8240-72, ГОСТ 8509-72 и другим стандартам на сортаменты фасонных профилей;
по поверхности — ГОСТ 535-58 и ГОСТ 500-58;
2.2. Сталь поставляется без термообработки или в термически обработанном состоянии.
2.3. В стали, предназначенной для сварных конструкций, свариваемость гарантируется технологией изготовления и химическим составом стали.
2.4. Механические свойства стали (при растяжении) в состоянии поставки и ударная вязкость должны соответствовать указанным в табл. 3.
Толщина проката в мм
Испытание на загиб в холодном состоянии:
с — толщина оправки;
а — толщина проката;
d — диаметр стержня
Ударная вязкость ан в кгс · м/см 2
Временное сопротивление разрыву s в в кгс/мм 2
Предел текучести s т в кгс/мм 2
Относительное удлинение δ5 в %
А. Сталь для металлических конструкций
180° с = 2а
180° с = 2а
180° с = 2а
180° с = 2а
180° с = 2а
180° с = а
180° с = 2а
180° с = 2а
180° с = 2а
180° с = 2а
180° с = 2а
180° с = 2а
180° с = 2а
180° с = 2а
180° с = 2а
180° с = 2а
Б. Сталь для армирования железобетонных конструкций
90° с = 3d
90° с = 3d
90° с = 3d
45° с = 5d
45° с = 5d
1. По требованию потребителя для сталей группы А производится испытание относительного удлинения на образцах десятикратной длины. В этом случае нормы относительного удлинения, указанные в табл. 3, понижаются на 3 % (абс).
2. Механические свойства сталей марок 14ХГС и 18Г2 всех толщин, марки 09Г2 толщиной 21 — 32 мм и марки 10ХСНД толщиной более 15 мм относятся к стали в термически обработанном состоянии.
3. Сталь всех марок, которая испытывается на ударную вязкость при температуре минус 70 °С, поставляется в нормализованном или улучшенном состоянии. Допускается проведение нормализации или другого вида термической обработки и в других случаях для стали марок группы А.
4. Ударная вязкость стали марок 09Г2 и 15ХСНД толщиной 5 — 10 мм при температуре минус 40 °С должна быть не менее 4 кгс · м/см 2 .
5. Фасонную сталь марок 09Г2, 09Г2С, 10ХСНД и 14Г2 толщиной 11 мм и менее допускается поставлять без термической обработки, при этом ударная вязкость при температуре минус 70 °С должна быть не менее 3 кгс · м/см 2 .
(Измененная редакция — «Информ. указатель стандартов» № 5 1972 г.).
2.5. Сталь марки 17ГС, поставляемая в термообработанном состоянии при толщине проката 11 — 20 мм, должна иметь ударную вязкость при температуре минус 40 °С не менее 4 кгс · м/см 2 .
2.6. По требованию потребителя сталь марок 14Г, 19Г, 18Г2 и 14ХГС поставляется в листах толщиной 11 мм с нормами механических свойств, указанными в табл. 3.
а) нормальной температуре (+20 °С) и одной минусовой температуре;
б) нормальной температуре (+20 °С) и после механического старения;
в) одной минусовой температуре и после механического старения;
г) одной из указанных температур (+20; -40 и -70 °С) или после механического старения.
Минимальное значение ударной вязкости при температуре +20 °С после механического старения должно быть не менее 3 кгс · м/см 2 .
2.8 По требованию заказчика сталь марок, указанных в табл. 4, должна поставляться в термически улучшенном состоянии (после закалки и отпуска), при этом нормы механических свойств стали должны соответствовать этой таблице.
Толщина проката в мм
Испытание на загиб на 180º в холодном состоянии:
с — толщина оправки;
а — толщина проката;
Ударная вязкость ан в кгс · м/см 2
Временное сопротивление разрыву s в в кгс/мм 2
Марганцовистые стали
Марганец как легирующий элемент широко применяется и в порошковой металлургии. Так же, как и никель, он принадлежит к переходным металлам. Марганец расширяет область существования y-Fe, значительно увеличивает твердость феррита, повышает устойчивость переохлажденного аустенита и снижает температуру мартенситного превращения. Марганец существенно повышает прокаливаемость порошковых сталей. Он является карбидообразующим элементом. С углеродом он образует карбид Mn3C, более устойчивый и прочный, чем карбид железа (цементит). При введении марганца в железоуглеродистые сплавы чистые карбиды марганца не образуются, а получаются всегда сложные (двойные) карбиды цементитного типа (Fe, Мn)3С, в которых часть атомов железа замещена атомами марганца. Содержание его в цементите определяется его количеством в стали. В высокомарганцовистой стали аустенитного класса в такой двойной карбид входит больше марганца, чем железа (около 80% Mn и 20% Fe), а в среднемарганцовистой с содержанием менее 3 % Mn, наоборот, в такой карбид входит больше железа, чем марганца (около 80 % Fe и 20 % Mn).
Для конца 70-х — начала 80-х годов характерен возрастающий интерес к порошковым марганцовистым сталям, обусловленный необходимостью разработки недорогих легированных порошковых сталей для массового производства. Однако использование марганца (так же, как и хрома) в качестве легирующего элемента для получения порошковых сталей связано с целым рядом трудностей, обусловленных высоким сродством этих элементов к кислороду.
Для снижения степени окисления марганца и образования трудновосстановимых оксидов в процессе спекания рекомендуется использовать чистые исходные компоненты и осушенные среды спекания. Кроме того, предлагается вводить в среду спекания HCl, HBr, HF или вводить в шихту борную кислоту или бораты металлов, использовать геттерирующие засыпки, содержащие ферроалюминий или ферросилиций. Марганец можно добавлять к порошку железа в виде измельченного ферромарганца или специальной лигатуры. Напротив, авторы работы, исследуя процесс получения марганцовистых сталей из смеси порошков, приходят к выводу, что решающим процессом следует считать сублимацию марганца и образование газовой фазы при спекании. Пары марганца, оседая на частичках железа, активируют диффузию легирующего элемента. Для наиболее эффективного действия сублимации на процесс легирования и спекания по мнению автора следует добавлять марганец в наивысшей концентрации. В таких условиях происходит взаимодействие паров марганца, выделяющихся из прессовки, с кислородом защитной среды, и образующиеся оксиды уносятся потоком и не образуются в объеме материала.
Ряд авторов отмечает уменьшение количества марганца в заготовке в процессе спекания вследствие его испарения. При этом убыль легирующего компонента зависит от доли открытой пористости. Возрастание давления прессования способствует подавлению процесса испарения и уноса марганца.
Процессы спекания и структурообразования марганцовистых сталей исследованы в работе. В качестве исходных материалов использовали порошки восстановленного и электролитического железа, ферромарганца с 78 % марганца, графита. Спекание осуществляли в вакууме при температуре 1100 °С. Усадка сталей и механические свойства после спекания приведены в табл. 31.
Уменьшение усадки с ростом содержания марганца, очевидно, связано с увеличением пористости. Установлено, что поры расположены в центрах протяженных областей аустенита в марганце, образованной мелкопластинчатым перлитом. Отмечается, что прочность спеченных сталей во всех случаях была заметно ниже, чем прочность литых и термообработанных сталей, что по мнению автора является следствием гетерогенности материала. Это приводит к необходимости введения более высокого количества легирующих элементов, чем следовало бы, если исходить из традиционной практики.
Структурообразование и свойства марганцовистых сталей на основе распыленного и восстановленного порошков железа изучены в работе. В качестве легирующей добавки использованы углеродистый ферромарганец (75 % Mn; 7,7 % С) с размером частиц 0,04 мм.
Тип железного порошка оказывает существенное влияние на структуру и свойства спеченных сталей. При использовании распыленного порошка при спекании сохраняются границы частиц железного порошка, а сердцевина частиц остается ферритной, нелегированной. Напротив, при использовании восстановленного порошка границ исходных частиц в микроструктуре не наблюдается. Установлено, что возрастающая прочность практически линейно зависит от содержания марганца вплоть до содержания его 4-4,5 %, при котором наблюдается максимум. Прочность образцов на основе восстановленного порошка возрастает на 210 МПа на каждый процент легирующего элемента, а для образцов на основе распыленного порошка при таком же количестве углерода прирост прочности составляет 108 МПа на каждый процент марганца. Максимальная прочность была достигнута на сталях на основе восстановленного порошка железа с 4,2 % марганца и 0,2 % углерода и составила 886 МПа, в то время как максимальное значение прочности сталей на основе распыленного порошка составило 672 МПа. Стали на основе восстановленного порошка имеют более высокие значения удлинения и меньшую твердость, чем стали на основе распыленного порошка.
В работе исследовано влияние технологических параметров и состава на свойства спеченных сплавов и сталей: Fe-Mn, Fe-Mn-C, Fe-Mn-Cr, Fe-Mn-Cr-C, Fe-Mn-Cr-Mo-C. Композиции были получены путем механического смешивания железного порошка и легирующих элементов, вводимых в чистом виде или в виде ферросплава. В качестве шихтовых материалов использовали железный порошок, полученный методом распыления (atomet), электролитический порошок марганца (размер частиц
Большая Энциклопедия Нефти и Газа
Марганцовистая сталь — марка
Малоуглеродистые марганцовистые стали марок 10Г2А и 12Г2А обладают высокой пластичностью и хорошей свариваемостью. Они применяются для изготовления штампо-сварных деталей. [1]
При обработке марганцовистой стали марки Г12 ( содержание марганца 12 94 %) было установлено -, что наиболее пригодным для такой обработки является резец из твердого сплава марки Т15К6, обладающий достаточной стойкостью при скорости резания 13 6 м / мин. Сплав Т5КЮ дает удовлетворительную стойкость ( 50 мин. Однако сплав Т15К6 сравнительно хрупок и плохо работает при ударной нагрузке. [2]
Коленчатый вал 3 изготовляется из марганцовистой стали марки 50Г и лежит на пяти коренных подшипниках. Поверхности шеек вала закалены токами высокой частоты. Диаметр коренной шейки 88 9 мм, мотылевой 70 мм. Для уравновешивания центробежных сил на первом и четвертом кривошипах вала установлены противовесы. [3]
Сталью, обладающей высоким сопротивлением износу, является марганцовистая сталь марки Г13, содержащая 1 0 — 1 3 % С; 11 0 — 14 0 % Мп. Она относится к аустенитному классу. [4]
Для сварки магистральных трубопроводов применяется проволока из углеродистой стали марок СВ-08 и СВ-08А и марганцовистой стали марок СВ-08г-А . Буква А в марке проволоки означает, что в проволоке содержится значительно меньше вредных примесей — серы и фосфора, поэтому такая проволока применяется для более ответственных работ. [5]
Регенератор состоит из корпуса 1, нижняя часть которого ( до фланцевого соединения) изготовляется из хро-моникелевой стали марки Х18Н9Т, а верхняя — из марганцовистой стали марки 09Г2ДТ / м; змеевиков 2, изготовленных из медных или стальных трубок, и каменной насадки 3 с размером гранул 4 — 10 мм. Змеевики опираются на днище корпуса. Коллекторы змеевиков выведены через сальники 4 и 5, размещенные в днище и крышке. Ввод воздуха в регенератор и вывод обратного потока производится через дырчатый конус 6, обтянутый сеткой 7 из нержавеющей стали, а вывод воздуха и ввод обратного потока — через кольцевой дырчатый коллектор 8, также обтянутый сеткой из нержавеющей стали. [6]
Легированные стали и сплавы на железной основе с особыми свойствами содержат в своем составе большое количество легирующие компоненты, сочетание которых придает сталям жаропрочность, антикоррозийность, большое электрическое сопротивление и другие ценные свойства. Так, например, сталь марки 1Х18Н9Т — хромоникелевая нержавеющая сталь с содержанием около 0 1 % углерода, 18 % хрома, 9 % никеля, около 1 % титана отличается высокой кислотоупорностью и применяется для изготовления аппаратов на заводах химического машиностроения; марганцовистая сталь марки ПЗ , называемая сталью Гадфильда, содержащая от 11 до 14 % марганца, хорошо работает на истирание и применяется для изготовления зубьев ковшей экскаваторов и железнодорожных стрелок. [7]
Легированные стали и сплавы на железной основе с особыми свойствами содержат в своем составе большое количество леги — рующие компоненты, сочетание которых придает сталям жаропрочность, антикоррозийность, большое электрическое сопротивление и другие ценные свойства. Так, например, сталь марки 1Х18Н9Т — хромоникелевая нержавеющая сталь с содержанием около 0 1 % углерода, 18 % хрома, 9 %: никеля, около 1 % титана отличается высокой кислотоупорностью и применяется для изготовления аппаратов на заводах химического машиностроения; марганцовистая сталь марки Г13, называемая сталью Гадфильда, содержащая от 11 до 14 % марганца, хорошо работает на истирание и применяется для изготовления зубьев ковшей экскаваторов и железнодорожных стрелок. [8]
В бункерах, предназначенных для хранения твердых кусковых материалов, внутреннюю поверхность наклонных стенок футеруют, чтобы предохранить стенки от истирания и образования вмятин при ударах. Тип футеровки зависит от истирающих свойств сыпучего материала. Так, бункера для руды и скрапа футеруют листовой марганцовистой сталью марки ЗОГ2 толщиной 6 — 10 мм. Иногда применяют деревянную футеровку. [10]
Марганцовистая машиностроительная сталь перлитного класса
Марганцовистая машиностроительная сталь перлитного класса
- Перлит класс марганец механически стальной 1.0-2.0% МП за-эвтектоидная машины во время производство марганца сталь легко обрабатывается и имеет глубокое свойство гасить. Благодаря своим механическим свойствам, по сравнению с углеродистой сталью, такая сталь в изделиях диаметром 30-40 мм обладает достаточно хорошей вязкостью и высокой прочностью тсри. При 0,1-0,7% С (до 0,05-0,10%) марганцевая сталь используется в промышленности при машинном производстве примерно на 0,7-1,8% от марки 20 Мп. В таблице.
Рисунок 19 показывает химический состав и критические точки Юрско-марсианско-Жемчужной горной стали некоторых наиболее распространенных марок. Таблица 19 средняя марганцевая сталь Марка стали 15г 20г ЗОГ 40г 50г 60г 70г 30Г2 40Г2 50G2 С% 0.12-0.18 0.17-0.24 0.27-0.34 0.37-0.44 0.47-0.55 0.57-0.65 0.67-0.75 0.27-0.34 0.37-0.44 0.47-0.55 MP、% 0.7-1.0 0.7-1.0 0.7-1.0 0.7-1.0 0.7-1.0 0.7-1.0 0.9-1.2 1.4-1.8 1.4-1.8 1.4-1.8 Критическая точка°С Как( 720. 720. 720. 720. 720. 720. 720. Семьсот десять Семьсот десять Семьсот десять Ас. 880. 850. Восемьсот десять Семьсот девяносто Семьсот семьдесят Семьсот шестьдесят 740. Семьсот девяносто Семьсот семьдесят Семьсот пятьдесят Примечание 1 содержание кремния 0,17
0,37%, серы и фосфора в количестве 0,08% или менее. 15 г и 20 г стали имеют повышенную прочность, высокую вязкость, подвержены
холодной пластической деформации и механической обработке, хорошо свариваются. Людмила Фирмаль
Такие стали часто используются в различных сварных конструкциях без термической обработки и после нормализации от 900-940°, таких как болты, гайки, заклепки и др. Марганцевая сталь, в том числе 0,15〜0,20% C, также используется в качестве цемента для изделий без больших нагрузок. При цементировании этой стали происходит плавный переход от цементного слоя к нецементному ядру 96 МН стали После цемента воздушно-корпуса, поверхностная твердость продукта Ain равномерна(отсутствие мягкого пятна).
Цементирование марганцевой стали проводят при 900-920°, а продолжительность цементации для получения слоя определенной глубины примерно такая же, как и у обычного углерода steel. To исключите перегрев и измельчение зерновых продуктов 160. 120. Южная Осетия $ .Восемьдесят * о » аз Сорок Иди. В • * ^ — Восемь ^ Л Ч ы ы Н. Н. Н. Восемьдесят 70. 60. Пятьдесят 」 Тридцать Двадцать / ля Триста миллиардов четыреста миллионов пятьсот тысяч шестьсот Температура отпуска, Сто 30. Механические свойства стали 50Г2 после закалки от 800°и отверждения при различных температурах В случае марганцевой стали, после цементации, она охлаждается с маслом 820-840°, чтобы сделать промежуточное упрочнение, затем она окончательно затвердевает и придает цементу высокую твердость layer. In в некоторых случаях вместо первичного (промежуточного) твердения цементные изделия нормализуются в коробку с хорошо развитым карбюратором.
- Последняя нота-от 780 до 800°.Крупные отвержденные продукты охлаждают водой или водой в масле, а мелкие отвержденные продукты охлаждают маслом. Праздник проходит при температуре 160-180°. Модифицированные стали с низким содержанием углерода ZOG, 30G2, 40G и 40G2 закаляются водой или маслом (в зависимости от размера изделия) и охлаждаются на 830-880°(в зависимости от критической точки).Отпуск дается при заданной твердости при 450-650°.Эта сталь используется при изготовлении таких изделий, как теплая, полуосевая и рычажная.
Сталь со средним содержанием углерода (50G и 50G2) закаляется маслом при 820-840°, а после отпуска при 450-600° эта сталь приобретает высокую прочность с достаточным содержанием перлита марки марганцевой конструкционной стали 97. 2.0 Вязкость. Эта сталь использована в подобных продуктах как кривошины, ведущие шатуны и цапфы. Сталь с высоким содержанием углерода (60 г и 70 г) закаляют при 800-820°с при охлаждении маслом, а температура отпуска заданной твердости составляет 200-450°.
Такие стали применяют для холодной ударной штамповки инструментов (обжимов, штампов, кувалд и др.), а также пружины, пружины, фрикционные диски и др. Людмила Фирмаль
На рис. 30 показано, как температура отпуска влияет на изменение механических свойств стали 50Г2 после закалки маслом от 800°С. В условиях отжига предел прочности этой стали составляет около 70 кг
Сварка марганцовистых сталей
Автор: Игорь
Дата: 28.12.2018
- Статья
- Фото
- Видео
Марганцовистая конструкционная сталь особого назначения обладает уникальным сочетанием прочности и вязкости, что используется для изготовления брони, траков, танков, рессор, пружин. Изделия характеризуются высокой износостойкостью к истиранию, ударным нагрузкам. Производят их методом отливки, но в процессе эксплуатации нередко требуется сварка марганцовистых сталей. Это может быть как создание новой конструкции, так и наплавление изношенной части.
Показателем свариваемости является углеродный эквивалент, в формулу которого входят: C, Mn, Si, Cr, Ni, Cu — расположение по мере влияния. Основные легирующие элементы — углерод и марганец: чем выше их содержание, тем больше усложняется процесс. Сплав с C до 0,25% относят к хорошо свариваемым, но при увеличении показателей эта способность падает.
Особенности химического состава марганцовистых сталей
Важно! При работе необходимо обеспечить быстрое охлаждение шва, поскольку при длительном нагреве происходят выделение карбидов и снижение прочности
Наличие С 0,6-1,2%, Mn 1-14% также может легироваться другими элементами в количестве до 1%. При расплавлении основная масса составляющих соединяется с кислородом, выделяя шлак, углерод образует газ СО, т. е. выгорает. Шлак, в свою очередь, мешает проведению процесса: закрывает электродугу, частично попадает в расплав и снижает прочность соединения. Процесс окисления уменьшает в расплаве содержание материалов, что совершенно меняет первоначальный химический состав, а значит, и свойства.
Влияние способа плавки на содержание газов и механические свойства
Сварка марганцовистых аустенитных сталей осложняется еще и структурными изменениями в околошовной зоне. Нагрев до температур рекристаллизации приводит к выделению карбидов, росту зерен, т. е. локальному изменению свойств металла из-за трансформации структуры — снижению прочности и вязкости, увеличению хрупкости.
Разновидности и технологии сварочного процесса
Технология сварки марганцовистых сталей, вне зависимости от способа ее проведения, должна учитывать все негативные факторы и обеспечить:
- Защиту от окисления. Частично эту функцию выполняет шлак, что происходит после его образования и для чего тратится часть элементов. Чтобы полностью предотвратить процесс окисления, необходимо использовать защитную атмосферу. Как правило, это применение вакуума — технологии дорогой и сложной в исполнении. Намного практичнее аргонно-дуговая сварка. Она будет уместной как в промышленных условиях, так и частном использовании.
- Частичное или полное восстановление химического состава. Содержание элементов в сварном шве кардинально меняется, чтобы частично или полностью его восполнить, задействуют электроды с покрытием из аналогичных элементов. Существуют марганцевые, алюминиевые с дозированным содержанием элементов разновидности.
- Форма наплавки. Сплавы при выгорании образуют большое количество угарных газов, что затрудняет не только видимость. Задерживаясь в расплаве, они снижают прочность структуры. Чтобы обеспечить их выход, наплавка электродами проводится уширенными стежками.
- Быстрое охлаждение. Длительный нагрев и медленное охлаждение Mn-сталей приводят к выпадению карбидов, которые снижают прочность и делают хрупким шов. Оптимальным по скорости нагрева и охлаждения соотношением является электродуговой метод.
Сварка стали 65Г сложная из-за содержания С. Для этих марок применяется ряд условий, которые снижают последствия вмешательства в структуру. По сути, процесс представляет собой наплавку промежуточного слоя между поверхностями. Для этого используются электроды определенного состава, подбираются они в зависимости от степени легирования.
С помощью электродов с содержанием Mn проводят наплавку на обычную конструкционную сталь, тем самым придавая ей износостойкость, присущую Mn-сталям. Процедуру проводят в 4 слоя, в каждом из которых увеличивается содержание марганца.
Сварка стали 16ГС выполняется электрошлаковым способом в защитной газовой атмосфере под флюсом. Она не склонна к отпускной хрупкости и характеризуется высокой стойкостью от перегрева в зоне термического влияния. Для наплавки рекомендуются электроды Э42, Э50А.
Способы выполнения и побочные явления сварки стали 09Г2С аналогичны вышеописанному. Для полу- и автоматического метода применяют электродную проволоку СВ08ГА, СВ-ЮГА, СВ10Г2 + флюс АН-348А, ОСЦ-45.
Сварка стали 30ХГСА. Легирование хромом, кремнием в околошовной структуре обеспечивает не только феррито-перлитный состав (образуется определенное количество бейнита и мартенсита), но и длительное охлаждение, что способствует выпадению карбидов по границам зерен и появлению повышенной хрупкости. Здесь применяются электроды Э55А, Э60, Э55.
Сварка пружинной стали, равно как и сварка рессорной стали, практически невозможны. Марка 50ХГА не предназначена для сварных конструкций. Эффект пружины она получает при пластической деформации в холодном состоянии, а при свариваемости в зоне термического влияния следствием становятся частичный отпуск и потеря прочности. Компромисс — использование электродов ОК 68/82, которые оптимальны для наплавки переходных слоев.
Сварка стали 09Г2С, технология выполнения которой предусматривает соединение в любой конфигурации, в том числе осуществление сварки полосовой стали, отличается от высоколегированной — в данном случае принцип сращения имеет характерную схожесть с наплавлением. Стыковка может проводиться разными способами: непрерывным оплавлением с подогревом и без. Зазоры при сварке металла допускаются в зависимости от сечения и вида расплавления — от 0,5 до 8 мм.
Особенности наплавки марганцовых сталей
Заключение
Углерод — основа, которая указывает на свариваемость, второй по значимости элемент — марганец (содержание до 1,5% мало влияет на процесс). Если С более 0,25%, возможность проведения операции зависит от добавочных элементов. При повышении его свыше 0,29% — возможно соединение с особыми условиями, при помощи обычного электрошлакового переплава. При повышении С более 0,4% — соединение практически невозможно, актуальным становится метод наплавки спец. электродами.
Марганцовистые стали марки
- ЛГМ
- Литьё
- Лаборатория
- Обрубка
- Термическая обработка
- Механическая обработка
- Видео
- Стальное литьё
- Чертежи (Сталь)
- Чертежи (Марганцовистая сталь)
- Марганцовистая сталь
- Жаропрочная сталь
- Сталь для отливок
- Конструкционная легированная сталь
- Легированная сталь
- Углеродистая сталь
- Чугунное литьё
- Чертежи (Чугун)
- Чугун
- Хромистый чугун
- Чушковой чугун
- Тюбинги
- Чугунные утяжелители кольцевые (УЧК)
- Корпуса
- Художественное литьё
- Художественное литьё
- Парковое литьё
- ЛГМ
- Литьё
- Лаборатория
- Обрубка
- Термическая обработка
- Механическая обработка
- Видео
- Стальное литьё
- Чертежи (Сталь)
- Чертежи (Марганцовистая сталь)
- Марганцовистая сталь
- Жаропрочная сталь
- Сталь для отливок
- Конструкционная легированная сталь
- Легированная сталь
- Углеродистая сталь
- Чугунное литьё
- Чертежи (Чугун)
- Чугун
- Хромистый чугун
- Чушковой чугун
- Тюбинги
- Чугунные утяжелители кольцевые (УЧК)
- Корпуса
- Художественное литьё
- Художественное литьё
- Парковое литьё
Марганцовистая сталь 110Г13Л
Марганцовистая сталь (110г13л) в нынешнее время широко используется в промышленности.
- Низкая стоимость.
- Простое производство.
- Высокая вязкость.
- Высокое сопротивление сильным ударным нагрузкам.
- Высокое сопротивление давлению.
- Высокая износостойкость.
Сталь 110г13л применяют в производстве деталей дробилок, мелющего оборудования, экскаваторов и других машин, а также для бронеплит, молотов, бойков, футеровок, дробящих плит, било и т. д., взамен быстро изнашиваемой в этих условиях обычной стали.
Литейный Завод Темиртау изготавливает:
Классификация: | Сталь для отливок легированная с особыми свойствами |
Применение: | корпуса вихревых и шаровых мельниц, щеки и конуса дробилок, зубья и передние стенки ковшей экскаваторов, железнодорожные крестовины и др. тяжелонагруженные детали, работающие под действием статических и высоких динамических нагрузок и от которых требуется высокая износостойкость.Cталь аустенитного класса. Сталь обладает высоким сопротивлением к износу при одновременном воздействии высоких давлений или ударных нагрузок. |
Зарубежные аналоги: | Известны |
Химический состав в % материала 110Г13Л ГОСТ 977 — 88, также входит в ГОСТ 21357-87
C | Si | Mn | Ni | S | P | Cr |
0.9 — 1.5 | 0.3 — 1 | 11.5 — 15 | до 1 | до 0.05 | до 0.12 | до 1 |
Примечание: Материал 110Г13Л также включен в ГОСТ 21357-87, где имеет другой хим. состав |
Технологические свойства материала 110Г13Л
Свариваемость: | не применяется для сварных конструкций. |
Флокеночувствительность: | не чувствительна. |
Склонность к отпускной хрупкости: | не склонна. |
Литейно-технологические свойства материала 110Г13Л
Линейная усадка, % : | 2.6 — 2.7 |
Режимы термической обработки материала 110Г13Л
Закалка 1050 — 1100 ° C, охлаждение в воде |
Механические свойства при Т=20oС материала 110Г13Л
Сортамент | Размер | Напр. | sв | sT | d5 | y | KCU | Термообр. |
— | мм | — | МПа | МПа | % | % | кДж / м2 | — |
Отливки | max толщина 30 | 654-830 | 360-380 | 44 | 37 | |||
Механические свойства устанавливаются по согласованию с заказчиком |
Зарубежные аналоги материала 110Г13Л Внимание! Указаны как точные, так и ближайшие аналоги.