Термообработка пружин из стали 65г
Закалка и отпуск стали 65Г
Термообработка стали 65Г
Конструкционная высокоуглеродистая сталь марки 65Г, поставляемая соответственно техническим требованиям ГОСТ 14959, представляет собой сталь рессорно-пружинной группы. Она должна сочетать в себе высокую поверхностную твёрдость (для чего в её состав вводится до 1% марганца) и повышенную упругость. Все эти характеристики обеспечиваются в результате выполнения надлежащей термической обработки изделий, изготовленных из рассматриваемой стали.
Исходный химсостав стали и требования к деталям, изготавливаемым из неё
Относясь к разряду экономнолегированных, сталь 65Г относительно дешёвая, что обуславливает её широкое и эффективное применение. В числе главных её компонентов находятся:
- углерод (в пределах 0,62…0,70 %);
- марганец (в пределах 0,9…1,2 %);
- хром и никель (до 0,25…0,30 %).
Все остальные составляющие – медь, фосфор, сера и т.д. – относятся к примесям, и допускаются в химическом составе данного материала в количествах, ограничиваемых госстандартом.
При достаточной твёрдости (например, после поверхностной нормализации она должна составлять не менее 285 НВ), и прочности на растяжение (не ниже 750 МПа), сталь 65Г обладает достаточно высокой для своего класса ударной вязкостью – 3,0…3,5 кг∙м/см 2 . Это даёт возможность использовать материал для производства ответственных деталей подъёмно-транспортного оборудования (в частности, ходовых колёс мостовых кранов, катков), а также пружинных шайб и пружин неответственного назначения.
Стоит отметить, что детали пружин, изготовленные из стали 65Г, плохо свариваются, а также не могут противостоять периодически возникающим растягивающим напряжениям (относительное удлинение не превышает 9%), а потому не подлежат применению в неразъёмных конструкциях машин и механизмов. При проведении процессов холодного пластического деформирования сталь становится весьма малопластичной уже при малых (до 10%) деформациях, поэтому, при необходимости изготовления из неё пружин больших размеров, приходится применять нагрев исходных заготовок, даже под листовую штамповку. Впрочем, и в горячем состоянии предельные степени деформации стали 65Г не превышают 50…60%.
Химический состав стали 65Г
Несмотря на то, что в ходе деформационного упрочнения предел временного сопротивления материала увеличивается до 1200…1300 МПа, этих показателей недостаточно для того, чтобы придавать конечной продукции (например, пружинам) необходимую эксплуатационную прочность. Поэтому закалка и отпуск стали 65Г обязательны.
Оптимальные технологические процессы термической обработки материала
Выбор режима термообработки диктуется производственными требованиями. В большинстве случаев для придания надлежащих физико-механических характеристик используют:
- нормализацию;
- закалку с последующим отпуском.
Температурно-временные параметры термической обработки и выбор её вида зависят от исходной структуры стали. Данный материал принадлежит к сталям доэвтектоидного типа, поэтому в его составе при температурах выше нижней точки аустенитного превращения — 723 °С — на 30…50 °С содержится аустенит в виде твердой механической смеси с незначительным количеством феррита. Поскольку аустенит – более твёрдая структурная составляющая, чем феррит, то интервал закалочных температур для стали 65Г будет существенно ниже, чем для конструкционных сталей с более низким процентным содержанием углерода. Таким образом, температурный интервал закалки стали данной марки должен находиться в пределах не более 800…830 °С.
Примерно такой же температурный диапазон применяют и для проведения нормализации – технологической операции термообработки, которую используют с целью исправления структуры материала изделия, для снятия внутренних напряжений, а при последующей механической обработке полуфабриката – и для улучшения его обрабатываемости.
Поскольку ударная вязкость у закалённой стали 65Г – пониженная, то после закалки изделия из неё, в частности, пружины, обязательно должны пройти высокий отпуск. Происходящие в ходе отпуска мартенситно-аустенитные превращения снижают уровень возникающих во время закалки внутренних напряжений, снижают хрупкость и несколько поднимают показатели ударной вязкости.
Переход высокого отпуска исключается из режима только в том случае, когда заготовка проходит изотермическую закалку. В результате высокого отпуска сталь 65Г приобретает структуру сорбита, характерными особенностями которой являются мелкодисперсность структуры при сохранении изначально высоких показателей твёрдости, что полностью соответствует эксплуатационным требованиям.
Режимы закалки стали 65Г
Для соблюдения тех характеристик, которые заданы техническими условиями на эксплуатацию деталей, при выборе режима закалки учитывают следующие составляющие:
- способ и оборудование для нагрева изделий до требуемых температур;
- установление нужного температурного диапазона закалки;
- выбор оптимального времени выдержки при данной температуре;
- выбор вида закалочной среды;
- технологию охлаждения детали после закалки.
Интенсивность нагревания предопределяет качество получаемой структуры. Для малолегированных сталей процесс ведут достаточно быстро, поскольку при этом минимизируется риск обезуглероживания материала, и, как следствие, потеря деталью своих прочностных параметров. Однако чересчур быстрый нагрев вызывает к жизни иные неприятности. В частности, для крупных деталей, с большими перепадами поперечных сечений это может вызвать неравномерное прогревание металла, с перспективой дальнейшего появления закалочных трещин, выкрашивания углов и кромок.
Температура заготовки в зависимости от цвета при нагреве
Для достижения максимальной степени равномерности нагрева сталь сначала подогревают в предварительных камерах термических печей до температур, несколько ниже закалочных – от 550 до 700 °С, и только потом деталь направляется непосредственно в закалочную печь. Быстрее всего нагрев осуществляется в расплавах солей, медленнее – в газовых печах, и ещё медленнее – в электрических печах. Именно поэтому поверхностная закалка изделий из стали 65Г в индукционных печах выполняется достаточно редко. Индуктор, как закалочный агрегат, используется лишь для изделий с малым поперечным сечением. При выборе вида нагревательного устройства важен также состав атмосферы, которая в нём создаётся. В частности, для термических печей, работающих на газе, стараются всемерно снижать длительность пребывания детали в печи, поскольку в противном случае происходит выгорание части углерода поверхностного слоя.
Исходя из нормируемой для стали 65Г температуры закалки в 800…820 °С, предельная величина обезуглероженного слоя не должна быть более 50…60 мкм.
Температурный диапазон закалочных температур может корректироваться в зависимости от конфигурации изделия. Например, если деталь имеет сложные очертания, малые габариты и изготовлена из листового металла, то оптимальной температурой будет нижняя граница указанного выше диапазона. Управляя температурой закалки (например, с помощью автоматических датчиков температуры), можно менять толщину закалённого слоя и величину зоны, которая прокалилась менее остальных. К подобным техническим решениям прибегают, когда различные части детали работают в разных эксплуатационных условиях.
Сталь 65Г не боится перегрева, однако при закалке по верхнему значению температурного диапазона ударная вязкость материала начинает уменьшаться, что сопровождается ростом зерён в микроструктуре.
Для снижения коробления деталей, которые имеют тонкие рёбра и перемычки, пользуются нагревом в соляных закалочных ваннах. Чаще применяют расплав хлористого натрия, а для раскисления в рабочий объём ванны добавляют буру или ферросилиций.
Выдержка при закалке изделий из стали 65Г при заданном температурном интервале происходит до тех пор, пока полностью не произойдёт перлитное превращение. Этот процесс зависит от размера поперечного сечения детали и способа нагрева. Для наиболее употребительных случаев можно воспользоваться данными таблицы:
Наибольший габаритный размер детали, мм | Закалка в пламенной печи | Закалка в электропечи | ||
Время нагрева, мин | Время выдержки, мин | Время нагрева, мин | Время выдержки, мин | |
До 50 | 40 | 10 | 50 | 10 |
До 100 | 80 | 20 | 88 | 20 |
До 150 | 120 | 30 | 130 | 30 |
До 200 | 160 | 40 | 175 | 40 |
Охлаждение изделий после закалки производят не в воду, а в масло, это позволяет избежать возможной опасности растрескивания.
Технология последующего отпуска
Как уже указывалось, для получения структуры сорбита изделия из стали 65Г подвергают только высокому отпуску при температурах 550…600 °С, с охлаждением на спокойном воздухе. Для особо ответственных деталей иногда проводят дополнительный низкий отпуск. Диапазон его температур — 160…200 °С, с последующим медленным охлаждением на воздухе. Такая технология позволяет избежать накапливания термических напряжений в изделии, и повышает его долговечность. Для отпуска можно применять не только пламенные, но и электрические печи, оснащённые устройствами для принудительной циркуляции воздуха. Время выдержки изделий в таких печах — от 110 до 160 мин (увеличенные нормативы времени соответствуют деталям сложной конфигурации и значительных поперечных сечений).
В качестве рабочих сред при закалке стали 65Г не рекомендуется использовать воду и водные растворы солей. Ускорение процесса охлаждения, которое вызывает вода, часто сопровождается неравномерностью прокаливания.
Итоговый контроль качества закалки состоит в оценке макро- и микроструктуры металла, а также в определении финишной твёрдости изделия. Поверхностная твёрдость продукции, изготовленной из стали 65Г, должна находиться в пределах 35…40 НRC после нормализации, и 40…45 НRC – после закалки с высоким отпуском.
Термообработка пружин из стали 65г
Пружины и рессоры испытывают в работе многократные знакопеременные нагрузки и после снятия нагрузки должны полностью восстанавливать свои первоначальные размеры.
Поэтому нагрев пружин и рессор необходимо проводить с предохранением от обезуглероживания или (для устранения вредного влияния обезуглероженного слоя) подвергать их после термической обработки обдувке дробью.
Широкое применение для изготовления рессор автомашин и пружин подвижного состава железнодорожного транспорта имеют кремнистые стали 55С2 (А) и 60С2 (А). Сталь 60С2 (А) применяют также для изготовления пружин, работающих при температурах до 250 °С.
Необходимо учитывать, что при полировании диаметр проволоки уменьшается на 3-10%, что приводит к снижению силовых характеристик пружин.
Цилиндрические пружины нагревают в горизонтальном положении.
Для теплостойкости штампы заключены в кожухи с асбестовой теплоизоляцией 5. Нижний штамп 1 неподвижный. Верхний штамп 2 с помощью пневмоцилиндра 6, управляемого краном 7, может перемещаться в осевом направлении. Контроль температуры осуществляется термопарой 8. Закаленные пружины помещают на нижний штамп , прижимают верхним штампом 2 и выдерживают в течение нескольких минут при температуре отпуска.
Открыть все | Закрыть
Наличие современного контрольно-измерительного оборудования и использование разработанных методик обеспечивают проведение всесторонних испытаний применяемых материалов и изготавливаемых пружин Пружины подвергаются контролю геометрических размеров, твердости, характеристик сила-деформация и циклической выносливости. В отдельных случаях упругие элементы, предназначенные для эксплуатации в экстремальных условиях, проходят дополнительные проверки на наличие дефектов ультразвуковым исследованием, а также методами дефектоскопии и рентгенодиагностики. Такой контроль позволяет оперативно и качественно решать задачи, связанные с изготовлением широкого спектра изделий от пружин для железнодорожного транспорта и пружин для АЭС до высокоточных клапанных и форсуночных пружин.
ГОСТЫ
• ГОСТ 14963-78. ПРОВОЛОКА СТАЛЬНАЯ ЛЕГИРОВАННАЯ ПРУЖИННАЯ. Технические условия. Настоящий стандарт распространяется на стальную легированную проволоку круглого сечения со специальной отделкой поверхности и без специальной отделки поверхности, предназначенную для изготовления пружин, подвергающихся после навивки термической обработке (закалке и отпуску).
• ГОСТ 9389-75. ПРОВОЛОКА СТАЛЬНАЯ УГЛЕРОДИСТАЯ ПРУЖИННАЯ. Технические условия. Настоящий стандарт распространяется на стальную углеродистую холоднотянутую проволоку, применяемую для изготовления пружин, навиваемых в холодном состоянии и не подвергаемых закалке.
• ГОСТ 14959-79. ПРОКАТ ИЗ РЕССОРНО-ПРУЖИННОЙ УГЛЕРОДИСТОЙ И ЛЕГИРОВАННОЙ СТАЛИ. Технические условия. Настоящий стандарт распространяется на горячекатаный и кованый сортовой прокат диаметром или толщиной до 250 мм, а также прокат калиброванный и со специальной отделкой поверхности, предназначенный для изготовления пружин, рессор и других деталей машин и механизмов, применяемых в закаленном и отпущенном состоянии. В части норм химического состава стандарт распространяется на все другие виды проката, слитки, поковки и штамповки.
• ГОСТ 2.401-68. ПРАВИЛА ВЫПОЛНЕНИЯ ЧЕРТЕЖЕЙ ПРУЖИН. ЕСКД. Настоящий стандарт устанавливает условные изображения и правила выполнения чертежей пружин всех отраслей промышленности.
• ГОСТ 16118-70. ПРУЖИНЫ ВИНТОВЫЕ ЦИЛИНДРИЧЕСКИЕ СЖАТИЯ И РАСТЯЖЕНИЯ ИЗ СТАЛИ КРУГЛОГО СЕЧЕНИЯ. Технические условия. Настоящий стандарт распространяется на винтовые цилиндрические пружины сжатия и растяжения из стали круглого сечения, отвечающие требованиям ГОСТ 13764-68-ГОСТ 13776-68, ГОСТ 2.401-68. Стандарт не распространяется на пружины, предназначаемые для работы при повышенных температурах, а также в агрессивных и иных средах, обязывающих к применению специальных материалов.
• ГОСТ Р 50753-95. ПРУЖИНЫ ВИНТОВЫЕ ЦИЛИНДРИЧЕСКИЕ СЖАТИЯ И РАСТЯЖЕНИЯ ИЗ СПЕЦИАЛЬНЫХ СТАЛЕЙ И СПЛАВОВ. Общетехнические условия. Настоящий стандарт распространяется на винтовые цилиндрические пружины сжатия и растяжения из специальных сталей и сплавов, работающие при температуре от минус 253°С до плюс 800°С.
• ГОСТ 3057-90. ПРУЖИНЫ ТАРЕЛЬЧАТЫЕ. Общетехнические условия. Настоящий стандарт распространяется на тарельчатые пружины из рессорно-пружинной стали, работающие при температуре от минус 60°С до плюс 120°С. Стандарт не распространяется на пружины, предназначенные для работы в агрессивных или иных средах, обязывающих к применению специальных материалов. Стандарт устанавливает обязательные требования, обеспечивающие взаимозаменяемость и безопасность тарельчатой пружины.
• ГОСТ 13764-86. ПРУЖИНЫ ВИНТОВЫЕ ЦИЛИНДРИЧЕСКИЕ СЖАТИЯ И РАСТЯЖЕНИЯ I КЛАССА ИЗ СТАЛИ КРУГЛОГО СЕЧЕНИЯ. Настоящий стандарт распространяется на пружины, предназначенные для работы в неагрессивных средах при температуре от минус 60°С до плюс 120 °С.
• ГОСТ 13765-86. ПРУЖИНЫ ВИНТОВЫЕ ЦИЛИНДРИЧЕСКИЕ СЖАТИЯ И РАСТЯЖЕНИЯ И СТАЛИ КРУГЛОГО СЕЧЕНИЯ. Обозначение параметров, методика определения размеров.
• ГОСТ 13766-86. ПРУЖИНЫ ВИНТОВЫЕ ЦИЛИНДРИЧЕСКИЕСЖАТИЯ И РАСТЯЖЕНИЯ I КЛАССА, РАЗРЯДА 1 ИЗ СТАЛИ КРУГЛОГО СЕЧЕНИЯ. Основные параметры витков. Настоящий стандарт распространяется на пружины сжатия и растяжения I класса, разряда 1 с силами при максимальной деформации пружин (F3) от 1,00 до 850 Н.
• ГОСТ 13767-86. ПРУЖИНЫ ВИНТОВЫЕ ЦИЛИНДРИЧЕСКИЕ СЖАТИЯ И РАСТЯЖЕНИЯ I КЛАССА, РАЗРЯДА 2 ИЗ СТАЛИ КРУГЛОГО СЕЧЕНИЯ. Основные параметры витков. Настоящий стандарт распространяется на пружины сжатия и растяжения I класса, разряда 2 с силами при максимальной деформации пружины (F3) от 1,00 до 800 Н.
• ГОСТ 13768-86. ПРУЖИНЫ ВИНТОВЫЕ ЦИЛИНДРИЧЕСКИЕ СЖАТИЯ И РАСТЯЖЕНИЯ I КЛАССА, РАЗРЯДА 2 ИЗ СТАЛИ КРУГЛОГО СЕЧЕНИЯ. Основные параметры витков. Настоящий стандарт распространяется на пружины сжатия и растяжения I класса, разряда 3 с силами при максимальной деформации пружины (F3) от 140 до 6000 Н.
• ГОСТ 13769-86. ПРУЖИНЫ ВИНТОВЫЕ ЦИЛИНДРИЧЕСКИЕ СЖАТИЯ I КЛАССА, РАЗРЯДА 4 ИЗ СТАЛИ КРУГЛОГО СЕЧЕНИЯ. Основные параметры витков. Настоящий стандарт распространяется на пружины сжатия I класса, разряда 4 с силами при максимальной деформации пружины (F3) от 2800 до 180000 Н.
• ГОСТ 13770-86. ПРУЖИНЫ ВИНТОВЫЕ ЦИЛИНДРИЧЕСКИЕ СЖАТИЯ И РАСТЯЖЕНИЯ II КЛАССА, РАЗРЯДА 1 ИЗ СТАЛИ КРУГЛОГО СЕЧЕНИЯ. Основные параметры витков. Настоящий стандарт распространяется на пружины сжатия и растяжения II класса, разряда 1 с силами при максимальной деформации пружины (F3) от 1,50 до 1400 Н.
• ГОСТ 13771-86. ПРУЖИНЫ ВИНТОВЫЕ ЦИЛИНДРИЧЕСКИЕ СЖАТИЯ И РАСТЯЖЕНИЯ II КЛАССА, РАЗРЯДА 2 ИЗ СТАЛИ КРУГЛОГО СЕЧЕНИЯ. Основные параметры витков. Настоящий стандарт распространяется на пружины сжатия и растяжения II класса, разряда 2 с силами при максимальной деформации пружины (F3) от 1,25 до 1250 Н.
• ГОСТ 13772-86. ПРУЖИНЫ ВИНТОВЫЕ ЦИЛИНДРИЧЕСКИЕ СЖАТИЯ И РАСТЯЖЕНИЯ II КЛАССА, РАЗРЯДА 2 ИЗ СТАЛИ КРУГЛОГО СЕЧЕНИЯ. Основные параметры витков. Настоящий стандарт распространяется на пружины сжатия и растяжения II класса, разряда 2 с силами при максимальной деформации пружины (F3) от 236 до 10000 Н.
• ГОСТ 13773-86. ПРУЖИНЫ ВИНТОВЫЕ ЦИЛИНДРИЧЕСКИЕ СЖАТИЯ И РАСТЯЖЕНИЯ II КЛАССА, РАЗРЯДА 3 ИЗ СТАЛИ КРУГЛОГО СЕЧЕНИЯ. Основные параметры витков. Настоящий стандарт распространяется на пружины сжатия и растяжения II класса, разряда 3 с силами при максимальной деформации пружины (F3) от 4500 до 280000 Н.
• ГОСТ 13774-86. ПРУЖИНЫ ВИНТОВЫЕ ЦИЛИНДРИЧЕСКИЕ СЖАТИЯ И РАСТЯЖЕНИЯ III КЛАССА, РАЗРЯДА 1 ИЗ СТАЛИ КРУГЛОГО СЕЧЕНИЯ. Основные параметры витков. Настоящий стандарт распространяется на пружины сжатия и растяжения III класса, разряда 1 с силами при максимальной деформации пружины (F3) от 12,5 до 1000 Н.
• ГОСТ 13775-86. ПРУЖИНЫ ВИНТОВЫЕ ЦИЛИНДРИЧЕСКИЕ СЖАТИЯ И РАСТЯЖЕНИЯ III КЛАССА, РАЗРЯДА 2 ИЗ СТАЛИ КРУГЛОГО СЕЧЕНИЯ. Основные параметры витков. Настоящий стандарт распространяется на пружины сжатия и растяжения III класса, разряда 2 с силами при максимальной деформации пружины (F3) от 315 до 14000 Н.
• ГОСТ 13776-86. ПРУЖИНЫ ВИНТОВЫЕ ЦИЛИНДРИЧЕСКИЕ СЖАТИЯ И РАСТЯЖЕНИЯ III КЛАССА, РАЗРЯДА 3 ИЗ СТАЛИ КРУГЛОГО СЕЧЕНИЯ.
Основные параметры витков. Настоящий стандарт распространяется на пружины сжатия и растяжения III класса, разряда 3 с силами при максимальной деформации пружины (F3) от 6000 до 20000 Н.
• ГОСТ 18751-80. ПРУЖИНЫ КРУЧЕНИЯ К УПОРАМ. Конструкция и размеры.
• ГОСТ 18753-80. ПРУЖИНЫ ПЛАСТИНЧАТЫЕ ДЛЯ УПОРОВ СО СКОСОМ. Конструкция и размеры.
• ГОСТ 18764-80. ПРУЖИНЫ К КОЛОДОЧНЫМ ПРИЖИМАМ. Конструкция и размеры.
• ГОСТ 18794-80. ПРУЖИНЫ РАСТЯЖЕНИЯ. Конструкция и размеры. Взамен ГОСТ 18794-73.
• ГОСТ 18793-80. ПРУЖИНЫ СЖАТИЯ. Конструкция и размеры. Взамен ГОСТ 18793-73.
• ГОСТ 13165-67. ПРУЖИНЫ СЖАТИЯ ДЛЯ СТАНОЧНЫХ ПРИСПОСОБЛЕНИЙ. Конструкция. Стандарт распространяется на пружины сжатия, предназначенные для стандартных фиксаторов с вытяжной ручкой, байонетных фиксаторов, реечных фиксаторов, самоустанавливающихся опор и плавающих зажимов.
• СТ ЦКБА 030-2006. ПРУЖИНЫ ВИНТОВЫЕ ЦИЛИНДРИЧЕСКИЕ. Арматура трубопроводная. Общие технические условия.
• EN 10270-1 ЕВРОПЕЙСКИЙ СТАНДАРТ ЧАСТЬ 1. ПРУЖИННАЯ ПОТЕНСИРОВАННАЯ ПРОВОЛОКА.
Steel wire for mechanical springs — Part 1: Patented cold drawn unalloyed spring steel wire.
• EN 10270-2 ЕВРОПЕЙСКИЙ СТАНДАРТ ЧАСТЬ 2. ПРУЖИННАЯ ПРОВОЛОКА ЗАКАЛЕННАЯ В МАСЛЕ.
Steel wire for mechanical springs — Part 2: Oil hardened and temperedspring steel wire.
• EN 10270-3 ЕВРОПЕЙСКИЙ СТАНДАРТ ЧАСТЬ 3. ПРУЖИННАЯ ПРОВОЛОКА ИЗ НЕРЖАВЕЮЩЕЙ СТАЛИ.
Steel wire for mechanical springs — Part 3: Stainless spring steel wire. Для изготовления автомобильных рессор применяют стали 60С2(А),50ХГ(А), 50ХФА, 50ХГФА и др.
Сталь марки 65г: характеристики и применение
Как правило, пускается в ход в промышленности: в производство пружин рессоров, а также некоторых других изделий. Если же уходить от темы промышленного производства, то можно отметить изготовление спортивных метательных ножей и клинков для мечей.
- Описание марки стали 65г
- Технические характеристики и ГОСТ
- Производство пружин
- Отпуск
- Малоразмерные пружины
- Отпуск малоразмерных пружин
- Пружины из отожжённого металла
Описание марки стали 65г
Температура ковки стали: начала — 1250 °C, конца — 760−780°C.
65 г представляет собой износостойкий, вязкий, прочный, упругий материал, с хорошим сопротивлением разрыву и стойкостью к ударным нагрузкам.
Механические свойства стали — следующих категорий:
- 3;
- 3а;
- 3б;
- 3в;
- 3 г;
- 4;
- 4а;
- 4б.
Температура закалки — 830 °C, масляная. Температура отпуска — 470 °C.
Существует несколько видов поставки стали 65 г, одним из них является следующий:
ГОСТ 14959–79 — фасонный и сортовой прокат.
Технические характеристики и ГОСТ
Согласно ГОСТу 14959−79, в химическом составе этого металла содержатся следующие вхождения:
- углерод (C) — до 0,7% ;
- марганец (Mn) — до 1,2%;
- кремний (Si) — до 0,4%;
- и другие элементы, процентные доли которых составляют менее 0,035%.
Марганец необходим для того, чтобы: во-первых, устранять окислы железа, образующиеся при производстве литой стали, а во-вторых, — для увеличения твёрдости, повышения предела упругости и сопротивления разрыву. Также его наличие увеличивает плотность, что достаточно важно для пружинно-рессорной стали.
Также в составе стали 65 г есть кремний (от семнадцати сотых до четырёх десятых процента), который отвечает за повышение упругих свойств стали, и хром (до двадцати пяти десятых процента), в свою очередь, затрудняющий рост зерна при нагреве и повышающий механические свойства стали при таких нагрузках, как статические и ударные.
Из технологических характеристик стали можно отметить то, что она имеет низкую свариваемость, в связи с чем она не используется как элемент для свариваемых конструкций. КТС (контактно-точечная сварка) — без ограничений.
Способы применения стали:
Спиральные пружины, листовые и пружинные шайбы. Их твёрдость — Rc = 40−50. При приёме пружин обычно производится проверка их основных показателей — твёрдости и упругости. Проверка должна происходить максимально приближенной к обычным условиям работы пружин (растяжению, сжатию и изгибу).
Производство пружин
Отпуск
На характеристики и качество готового продукта достаточно сильно влияет её термообработка.
При производстве изделий из сверхпрочной проволоки имеется необходимость подвергнуть элементы отпуску при температуре от 250 °C до 350 °C, эта процедура выполняется для снятия созданного при производстве внутреннего напряжения и, конечно, для повышения упругости витков изделия.
Вышеописанная процедура, как правило, осуществляется в селитровых ваннах, но может производится и в камерных электрических или нефтяных печах. В случае с электрическими печами время удержания составляет 10 минут, а в нефтяных — 40 минут.
Чтобы нагреть пружины для закалки, их помещают в заранее нагретые до определённой температуры соляные ванны или камерные печи. Во избежание деформации крупноразмерных изделий они подвергаются нагреву в приспособлении, специально для этого предназначенном.
Малоразмерные пружины
Если в печи отсутствует защитная атмосфера, пружины подлежат упаковке в изолирующей среде, а также выполняется заброс небольшим количеством древесного угля.
Охлаждение пружин производится в масле. В воде охлаждать крайне не рекомендуется, так как могут возникнуть трещины на поверхности. Если охлаждение в воде необходимо, то время выдержки должно составлять 2−3 секунды, после чего нужно поместить готовый продукт в масло.
Отпуск малоразмерных пружин
Перед тем как отпустить пружины, их необходимо очистить от масла методом промывки содовым раствором или методом протирки в опилках. Если после очистки на поверхности пружин останется неудаленное масло, то при отпуске оно может вспыхнуть и изменять условия процедуры отпуска. Рекомендуемая температура отпуска — от 300 до 420 градусов по Цельсию. Крайние витки необходимо отжигать в свинцовой ванне.
Перед отпуском крупные пружины необходимо надеть на толстые трубы во избежание коррозии при нагреве.
Необходимо обращать внимание на поверхность материала, предназначенного для изготовления пружин. Всевозможные дефекты могут привести к трещинам, а обезуглероживание верхнего слоя приводит к снижению упругости изделия.
Зачастую при использовании антикоррозийных покрытий, иногда используемых для нанесения, пружины становятся хрупкими из-за перенасыщения стали водородом. Очень сильно это замечается на пружине из проволоки или из лент малых сечений. Такая хрупкость называется травильной и исправляется путём нагрева готового продукта в сушильном шкафу при температуре 150−180 градусов по Цельсию в течение 1,5−2 часов.
При большом времени травления происходит настолько сильное насыщение металла водородом, что температурная обработка не помогает устранить хрупкость и возникает необходимость отжига пружин. Чтобы избежать перенасыщения стали водородом, следует отказаться от травления перед процессом покрытия, а необходимо подвергнуть их очистке струёй песка и нагревать только после покрытия методом, описанным выше.
Пружины из отожжённого металла
Если пружины будут изготавливаться из отожжённого металла, то тогда, скорее всего, может быть необходимо не только закалить металл, так как основную роль будет играть его твёрдость. Например, при использовании в производстве толстой (более 6 мм) проволоки есть необходимость производить отпуск при температуре около 720 градусов по Цельсию. Делается это для того, чтобы придать готовому изделию прочности и только затем произвести закалку. Касаемо тех деталей, что навиваются в разогретом виде: в любом случае, здесь необходима нормализация, которая выполняется в самом начале обработки металла, перед остальными процессами.
Технические характеристики рессорно пружинной стали 65Г
Автор: Игорь
Дата: 28.05.2019
- Статья
- Фото
- Видео
Основные характеристики сплавов определяют область их применения. Сталь 65Г отличают высокие показатели упругости и износоустойчивости. Преимуществом продукта является и низкая стоимость. Эти качества делают его незаменимым в изготовлении рессорной продукции, а также спортивного оружия.
Расшифровка маркировки
Сталью называют сплав железа с углеродом. Одной из самых распространенных в России является марка стали 65Г, расшифровка ее понятна и проста – цифрами и буквами обозначается содержание в сплаве легирующих элементов. Общий принцип маркировки сталей предусматривает три позиции, которые указывают слева направо:
- массу углерода в сотых долях процента;
- знак главного легирующего компонента;
- округленное до целого числа значение основного добавочного элемента.
Меняя добавки и их количественное содержание, можно материалу задать необходимые технологические свойства. Углерод повышает твердость сплава, однако при увеличении его концентрации выше 2,14% материал становится слишком хрупким. В данном случае цифры свидетельствуют о массовой доле основного составного элемента в стали – углерода. Его концентрация составляет 0,65%. Буква «Г» указывает на главный легирующий компонент – марганец.
Сталь 65Г, характеристики, применение регламентируются ГОСТОм 14959-2016, который определяет концентрации легирующих элементов. Номенклатура выпускаемой продукции состоит:
- из сортового проката;
- прутка калиброванного с ГОСТом – 1052-71;
- серебрянки, ГОСТ – 14955-77;
- листов и полос разных размеров.
Сплав относится к категории высокоуглеродистого рессорно-пружинного сырья. В них должны сочетаться свойства высокой поверхностной твердости и хорошей упругости. Их достигают с помощью термической обработки и различных добавок. Основными из них являются:
- углерод, обеспечивающий эффект прочности материала – 0,62-0,70%;
- марганец, повышающий поверхностную твердость и значительное сопротивление разрыву – 0,9-1,2%;
- кремний, один из раскислителей – 0,17-0,37%.
Состав сплава
К второстепенным добавкам относятся:
- хром, который повышает твердость материала, степень его жаростойкости – 0,25%;
- никель, придающий антикоррозионные свойства и пластичность – до 0,25%;
- медь, увеличивающая устойчивость к коррозии – 0,20%;
- сера и фосфор – по 0,035%.
Последние два элемента относятся к вредным примесям, присутствие которых неизбежно. Фосфор снижает пластичность сплава и повышает его хрупкость. Сера вызывает явление красноломкости, то есть возникновение трещин в металле при интенсивном нагреве. Однако их концентрация в сплаве не превышает величины, допустимой для качественного материала.
Малое количество легирующих добавок обеспечивает относительную дешевизну сплава, что и делает его крайне востребованным. Химический состав определяет физические и технологические свойства стали 65Г:
- твердость при 20оС – 285 НВ;
- модуль упругости – 84 ГПа;
- высокую прочность на разрыв – 750 МПа;
- хорошую ударную вязкость – 3,0 – 3,5 кг*м/см2;
- удельный вес – 7850 кг/м3;
- диапазон температур для закалки – 800 – 830оС;
- температурный интервал ковки – 760 – 1250оС.
Заменителями для сплава могут выступать марки:
- 55С2;
- 60С2А;
- 9ХС;
- 50ХФА;
- 60С2;
- 70Г;
- 55С.
Из зарубежных аналогов можно отметить:
- G15660 – в Соединенных штатах;
- 66Mn4 – Германии;
- 65Mn – Китае;
- 080А67 – Великобритании.
Термическая обработка
Сталь 65Г, характеристики которой изначально задаются ее химическим составом, подлежит дальнейшей термообработке. Во многом, от нее зависит качество производимой продукции. В результате теплового воздействия:
- происходят внутренние структурные изменения в металле;
- улучшаются его механические свойства;
- увеличивается износоустойчивость изделий;
- повышается их надежность;
- снижается себестоимость деталей вследствие применения более дешевых добавок;
- расширяется сфера использования продукции.
Основные этапы термической обработки заключаются в процессах:
- отжига;
- дальнейшей нормализации;
- закалки и отпуска.
Закалка и отпуск изделий
Закалка происходит при нагреве детали до температур выше критической, и быстром охлаждении в определенной среде. Диапазон температур, подходящих для закалки деталей из стали 65Г, составляет 800 – 820оС. Дальнейшее охлаждение осуществляется в масле, что позволяет устранить вероятность растрескивания поверхности изделий.
В зависимости от тех характеристик, которые заданы эксплуатационными требованиями для изделий, при подборе режима закалки учитываются:
- оборудование и метод нагрева;
- температурный диапазон процесса;
- время выдержки при выбранном режиме;
- тип закалочной среды;
- способ дальнейшего охлаждения.
Отжиг изделий производится путем повторного нагрева, после которого осуществляются процедуры выдержки и медленного охлаждения. Температура отжига соответствует тепловому воздействию при закалке стали.
Отпуск металла осуществляют для ликвидации внутренних напряжений, появившихся в нем в процессе закалки. На выходе несколько уменьшается твердость сплава, но увеличивается его вязкость. Отпуск проводится путем вторичного нагрева в более низком температурном режиме и последующего спокойного охлаждения. Кроме того, меняя температурные режимы отпуска, можно придавать металлу разные механические свойства.
Для продукции из стали 65г обычно проводят высокий вариант отпуска в диапазоне температур 550 – 600 градусов с дальнейшим охлаждением на воздухе, однако при этом снижается показатель ударной вязкости. Для изделий, требующих высокой надежности и долговечности, дополнительно применяется низкий отпуск в интервале 160 – 200оС, сопровождающийся медленным охлаждением на воздухе. Твердость стали на выходе может составить 45 – 47 HRC.
Преимущества и недостатки
Несомненно, широкая область применения обусловлена очевидными достоинствами, которыми обладает сталь 65Г:
- характеристики, применение для ножей обусловлены устойчивостью к ударным деформациям и простотой заточки;
- высокая твердость, до 50-55 HRC, предохраняет изделия от поломок;
- низкая стоимость позволяет удешевить выпускаемую продукцию;
- высокая сопротивляемость разрыву делает ее незаменимой в изготовлении пружинной продукции;
- значительный предел текучести позволяет изделию восстанавливать свою форму после прекращения действия деформирующей нагрузки;
- металл хорошо поддается ковке;
- после процедуры чернения на его поверхности образуется оксидная пленка, предохраняющая поверхность от коррозии.
Как и любой сплав, сталь 65Г обладает определенными недостатками:
- она сильно подвержена коррозии;
- несмотря на легкую заточку, доводка режущей кромки слишком трудоемка;
- существует вероятность деформации при ударных нагрузках.
Область применения
Сплав является конструкционным материалом с высокой степенью упругости, что позволяет использовать его в машиностроении и станкостроении для производства механизмов, работающих под длительными нагрузками:
- для создания рессор в автомобилях;
- упорных шайб и сланцев;
- подшипников и тормозных лент;
- пружинных механизмов;
- фрикционных дисков.
Из сталей марок 65, 70 можно изготовить также:
- спортивные клинки;
- метательные ножи;
- медицинские изделия;
- бритвы;
- другие элементы, не подвергающиеся длительным ударным нагрузкам.
Материал не подходит для сварки и использования в условиях повышенной влажности, так как подвержен коррозии. Однако его можно применять в контактно-точечных сварочных операциях. Изготовленные из него изделия необходимо смазывать маслом или использовать только в сухом помещении.
Термообработка пружин из стали 65г
Название работы: Режим термической обработки пружин из стали 65Г
Предметная область: Производство и промышленные технологии
Описание: Основной целью курсовой работы по технологии конструкционных материалов является освоение принципов выбора конструкционных материалов для деталей машин, инструмента, основываясь на знании состава и строения металлических конструкционных материалов и методов придания материалам заданных форм.
Дата добавления: 2014-01-07
Размер файла: 267.5 KB
Работу скачали: 270 чел.
Цель курсовой работы
Тематика курсовой работы
Разработка технологического процесса термической обработки стали 4
Описание структурных превращений при термической обработке 6
Превращение в закаленной стали при среднем отпуске (450 0 С) 9
Влияние легирующих элементов 11
Список используемой литературы 12
Назначить режим термической обработки пружин из стали 65Г.
Опишите микроструктуру стали до и после термической обработки.
Цель курсовой работы.
Основной целью курсовой работы по технологии конструкционных материалов является освоение принципов выбора конструкционных материалов для деталей машин, инструмента, основываясь на знании состава и строения металлических конструкционных материалов и методов придания материалам заданных форм.
Тематика курсовой работы.
Прогресс в современной машинной технике связан с созданием u освоением новых, наиболее экономичных материалов, развитием и внедрением в производство методов упрочнения металлов, расширении сортамента выпускаемых материалов.
Совершенство производства, выпуск современных разнообразных машиностроительных конструкций, инструмента, специальных приборов и машин невозможны без дальнейшего развития производства стали. В зависимости от назначения сталям предъявляют различные требования. Некоторые из них должны отличаться высокой прочностью другие — пластичностью, высокой износостойкостью и усталостной прочностью. Получение тех или иных свойств определяется структурой. В свою очередь строение стали зависит от состава и характера предварительной обработки, следовательно, между всеми этими характеристиками существует определённые связи: между составом и строением (первая связь), между обработкой и строением (вторая связь), между строением и свойствами (третья связь).
Темой работы является разработка технологического процесса термической обработки стали различного состава применительно к условиям работы данной детали машин и инструмента. С помощью термической обработки можно придавать различные значения свойствам стали без изменения её химического состава.
Различные операции термической обработки характеризуются следующими элементами: скоростью нагрева, температурой максимального нагрева, продолжительностью выдержки при температуре нагрева, скоростью охлаждения. В свою очередь изменение значения свойств металлов при проведении термической обработки объясняется изменением внутреннего строения, которое испытывает сталь при её нагреве и охлаждении.
Разработка технологического процесса термической обработки стали.
Для изготовления упругих элементов общего назначения, применяются легированные рессорно-пружинные стали.
Особенность работы деталей типа упругих элементов состоит в том, что в них используются в основном упругие свойства стали и не допускаются при нагрузке (статической, динамической, ударной) возникновение пластической деформации. В связи с этим стали должны иметь высокое сопротивление малым пластическим деформациям, т.е. высокие пределы упругости (текучести) и выносливости при достаточной пластичности и в сопротивлении хрупкому разрушению. Важные характеристики сталей данного типа — релаксационная стойкость и прокаливаемость.
Для обеспечения этих требований сталь должна иметь однородную структуру, т. е. хорошую закаливаемость и сквозную прокаливаемость (структуру мартенсита по всему сечению детали после закалки).
Наличие в структуре стали феррита, продуктов эвтектоидного распада, остаточного аустенита снижает упругие свойства детали. Известно, что сопротивление малым пластическим деформациям возрастает с уменьшением размера зерна в стали.
К группе рессорно-пружинных сталей общего назначения относятся стали перлитного класса с содержанием углерода 0,5. 0,7%, которые для улучшения свойств (прокаливаемость, предел выносливости, релаксационная стойкость, мелкозернистая структура) дополнительно легируют кремнием (1,5. 2,8%), марганцем (0,6. 1,2 %), хромом (0,2. 1,2%), ванадием (0,1. 0,25%), вольфрамом (0,8. 1,2%), никелем (1,4. 1,7).
Эксплуатационные свойства стали приобретают после термической обработки, состоящей в закалке и среднем отпуске (350. 520 0 С) на тростит отпуска (рис.1а). Применение находит также изотермическая закалка на нижний бейнит (рис.1б).
В соответствии с заданием необходимо подобрать режим термической обработки стали 65Г. Сталь обладает стойкостью к росту зерна. Имеет высокие механические свойства.
Примем первый вариант термической обработки (рис. 1а): закалку и средний отпуск. По данным ГОСТа 14959-79 температура закалки для 65Г составляет 840-860 0 С (А С3 = 788 0 С). В качестве охлаждающей среды применяем масло. Последующий отпуск проводим при температуре 420-450 0 С (выше температуры необратимой отпускной хрупкости). Получаемая структура тростита отпуска (мелкозернистая ферритоцементитная смесь) обеспечит высокое сопротивление малой пластической деформации при достаточных значениях пластичности и вязкости (рис.2а, б) с НRC = 40. 50.
Указанный режим термической обработки (рис.3) обеспечивает получение следующих свойств (минимальных):
s 0,2 > 1270МПа; s в > 1470МПа; d > 12%; y > 42%;
НВ » 3900 — 4800 МПа (отпуск 450 0 ).
Описание структурных превращений при термической обработке.
Сталь 65Г — сталь перлитного класса. Кремний несколько повышает точку А 3 и снижает А 4 . Критические точки стали А С1 — 752 0 С , А С3 788 0 С.
Учитывая содержание углерода, сталь по структуре отжига относится к доэвтектоидным сталям, однако кремний сдвигает точку S диаграммы Fe -Fe 3 C до 0,7 % С, т. е. сталь становится почти эвтектоидной.
Поэтому необходимо проведение полной закалки (температура А 3 — 30-50 0 С, т.е. » 840-860 0 С). При полной закалке сталь нагревают до однофазной мелкозернистой аустенитной структуры (рис.4).
Последующее охлаждение в масле со скоростью большей чем V кр (наименьшая скорость охлаждения, при которой аустенит превращается в мартенсит) обеспечивает получение мелкозернистого мартенсита (рис.5).
V К — наименьшая скорость охлаждения, при которой аустенит превращается в мартенсит.
Рассмотрим превращения, происходящие в стали 65Г при нагреве с исходной равновесной структуры Ф + Ц. На практике при обычных скоростях нагрева (электропечи) под закалку перлит сохраняет свое пластинчатое или зернистое строение до температуры А С1 (до 752 0 С для стали 65Г). При температуре А С1 в стали происходит превращение перлита в аустенит. Кристаллы (зерна) аустенита зарождаются в основном на границах фаз феррита и цементита. При этом параллельно развиваются два процесса:
- полиморфный переход Fe a ® Fe g ;
- растворение аустенита в цементите.
Представим общую схему превращения
П (Ф +Ц) ½ А1 ® (Ф + Ц + А) 1 ® (А + Ц) 2 ® ( А неоднородный ) 3 ® (А гомогенный ) 4
Образование зерен аустенита происходит с большей скоростью, чем растворение цементита перлита, поэтому необходима выдержка стали при температуре закалки для полного растворения цементита и получения гомогенного аустенита.
Из рис.6 видно, что фазовая кристаллизация приводит к измельчению зерна в стали. При этом чем дисперснее структура перлита (Ф +Ц) и чем выше скорость нагрева стали, тем больше центров зарождения аустенита, а, следовательно, возрастает дисперсность продуктов его распада. Увеличение дисперсности продуктов распада аустенита приводит к увеличению пластичности, вязкости, уменьшение чувствительности к концентраторам напряжений.
Рассмотрим изменение структуры в стали при закалке в масле. При непрерывном охлаждении стали со скоростью большей чем критическая скорость (рис.5) аустенит превращается в мартенсит. Мартенситное превращение развивается в сталях с высокой скоростью (1000-7000м/с) в интервале температур Мн. Мк. При этом необходимо учитывать, что с увеличением % С точки Мн и Мк понижаются, в то время как введение кремния их повышает.
Из рис.7 видно, что температура Мн и Мк определяются в основном химическим составом стали.
В результате закалки стали 65Г структура может иметь кроме мартенсита и некоторое количество остаточного аустенита.
Возможность мартенситного превращения в стали объясняется наличием принципа структурного и размерного соответствия между аустенитом — плоскость (111) и мартенситом — плоскость (110), т.е. g ® a переход носит бездиффузионный характер. Превращение аустенита в мартенсит происходит путем кооперативного направленного сдвига только атомов железа на расстояние меньше межатомных. Полученный мартенсит представляет собой перенасыщенный твердый раствор углерода в a — железе и имеет тетрагональную кристаллическую решетку. Атомы углерода занимают в основном октаэдрические поры.
Образование в результате закалки мартенсита приводит к большим внутренним напряжениям, повышению твердости, прочности (фазовому наклепу), однако при этом возрастает склонность стали к хрупкому разрушению, что требует проведения дополнительно последующего отпуска.
Превращение в закаленной стали при среднем отпуске (450 0 С).
Нагрев закаленной стали до температуры А С1 принято называть отпуском. Отпуск должен обеспечить получение в стали необходимые эксплуатационных свойств. Структура стали 65Г после закалки состоит из мартенсита и остаточного аустенита.
При отпуске будет проходить одновременно несколько процессов:
1. Распад перенасыщенного твердого раствора мартенсита, при котором углерод выделяется в виде карбидов ( e — карбид, Fe 3 C ).
2. Распад остаточного аустенита, который превращается в мартенсит отпуска.
3. Выделение карбидной фазы Fe 3 C и ее последующая коагуляция.
4. Уменьшение плотности дефектов кристаллического строения.
5. Снимаются внутренние напряжения .
Рассмотрим последовательность процессов при отпуске с повышением температуры:
До 80 0 С диффузионная подвижность атомов мала и распад аустенита идет медленно.
Первое превращение при отпуске развивается в диапазоне 80. 200 0 С и приводит к формированию структуры отпущенного мартенсита — смеси пересыщенного углеродом a — раствора и когерентных с ними частиц e — карбида. В результате этого существенно меняется тетрагональность мартенсита ( часть углерода выделяется в виде метастабильного e — карбида ), удельный объем, снижаются внутренние напряжения (рис.8).
Второе превращение при отпуске развивается в интервале температур 200. 260 0 С (300 0 С) и состоит: 1) в превращении остаточного аустенита в отпущенный мартенсит; 2) в дальнейшем распаде отпущенного мартенсита: уменьшается степень его перенасыщенности до 0,15. 0,2% С, начинается преобразование e — карбида в цементит и его обособление, разрыв когерентности; 3) в снятии внутренних напряжений; 4) в связи с переходом остаточного аустенита в отпущенный мартенсит имеет место некоторое увеличение объема.
Третье превращение при отпуске развивается в интервале 300. 400 0 С. При этом заканчивается распад отпущенного мартенсита и процесс карбидообразования. Формируется карбидоферритная смесь, существенно снимаются внутренние напряжения; повышение температуры отпуска выше 400 0 С активизирует процесс коагуляции карбидов, что приводит к уменьшению дисперсности ферритоцементитной смеси.
Структуру стали после низкого отпуска (до 250 0 С) называют отпущенным мартенситом. Структуру стали после среднего отпуска 350. 500 0 С называют троститом отпуска. Структуру стали после высокого отпуска 500. 600 0 С называют сорбитом отпуска.
В стали 65Г после полной закалки в масле и среднего отпуска при 450 0 С образуется структура тростита.
Самостоятельное изготовление и закалка пружины
Закалка пружины как вид термической обработки. Требования к материалу для изготовления изделия, ГОСТ. Условное обозначение проволоки для пружин. Нюансы процесса изготовления и способы закалки в домашних условиях.
Закалить пружину – это значит подвергнуть ее термической обработке с целью повышения прочности, упругости, твердости и пластичности изделия, что в результате отразится на физико-химических свойствах и сроке эксплуатации. Сущность процесса заключается в нагреве до температуры, при которой структура металла переходит в особое состояние, и высокоскоростном охлаждении в различных средах, включая охлаждение на воздухе. Выбор технологии закалки зависит от марки стали, из которой изготовлена пружина и диаметра проволоки. Такую операцию выполняют в производственных и домашних условиях.
Самодельную пружину не рекомендуется использовать в устройствах, работающих при повышенных нагрузках.
Требования к проволоке и ее диаметру
Стальная проволока для изготовления пружины, которая впоследствии будет подвергаться закалке, должна соответствовать требованиям, указанным в ГОСТ 14963-78. Согласно документу она классифицируется по таким признакам:
- способу навивки (холодным способом и горячим);
- способу отделки поверхности (без отделки и с отделкой);
- точности изготовления (нормальная и повышенная);
- классу механических свойств (общего и ответственного назначения);
- диаметру (от 0,5 до 14 мм);
- виду поставки (в прутках или мотках).
На промышленных предприятиях методом холодной навивки изготавливают пружины из проволоки, диаметр которой не превышает 16 мм, горячим способом – вплоть до 80 мм. При этом на производстве они навиваются с помощью вращающейся оправки, подающих роликов и одного или двух упорных штифтов.
Изготавливают изделия из проволоки марок 51ХВА, 70С3А, 65С2ВА, 60С2А, 65Г, 60ХВА с поверхностью шлифованной, полированной или без шлифования и полировки. По этому признаку и способу изготовления проволока выпускается в прутках или мотках таких групп:
- А, Б, В, Г, Е – со специальной отделкой;
- Н – без отделки.
Условное обозначение проволоки в технической документации и на сопроводительных бирках состоит из цифр и букв:
- 1 – марка стали;
- 2 – способ отделки поверхности;
- 3 – точность изготовления;
- 4 — класс механической точности;
- 5 — способ навивки;
- 6 — диаметр в мм;
- 7 — обозначение стандарта.
Например, проволока с полированной поверхностью, изготовленная из стали 60С2А повышенной точности I класса для пружин горячей навивки диаметром 2,0 мм будет иметь следующее обозначение:
60С2А – А – П – I – ГН – 2,0 ГОСТ 14963-78
В государственном стандарте оговариваются допустимые предельные отклонения, овальность и недопустимость наличия определенных видов дефектов, а также способы упаковки и транспортировки.
Изготовление пружины своими руками
- маркой стали, из которой будет изготавливаться изделие;
- диаметром проволоки;
- количеством навиваемых витков;
- шагом витка.
Самодельное изделие может изготавливаться на оправке и с помощью шуруповерта. Понадобятся еще кусачки, молоток, тиски, источник нагрева (печь, газовая горелка, костер), среда для охлаждения и дополнительные приспособления.
Самый простой способ изготовления – это намотать провод на какой-либо стержень подходящего диаметра вручную. При этом необходимо следить за тем, чтобы витки плотно прилегали друг к другу.
Процесс изготовления пружины с помощью шуруповерта можно посмотреть на видео:
- Проволока должна быть абсолютно ровной. Если изделие изготавливают из неровной или старой пружины, она обязательно должна быть выровнена.
- Проволока должна быть очищена от ржавчины, масел и других загрязнений. Для этого используют содовый раствор или химические средства, позволяющие растворить масла и снять ржавчину. Протирать проволоку рекомендуется опилками.
- Проволока диаметром более 2 мм перед навивкой должна быть подвергнута процедуре отжига путем нагрева докрасна (температура в пределах 400 °C) и охлаждения на воздухе.
- При намотке необходимо контролировать положение витков относительно друг друга. Они должны плотно прилегать один к одному.
Закалка пружин в домашних условиях может выполняться несколькими способами: с помощью газовой горелки, нагревом в печи, изготовленной из кирпича или камня, или просто в костре. Нагрев должен производиться до температуры около 870 °C. На глаз это определяется цветом проволоки: она в процессе нагрева делается почти белого цвета. Затем ее необходимо поместить в масло (трансформаторное, веретенное или другую жидкую среду), которое обеспечит медленное охлаждение. Напомним, что быстрое охлаждение может вызвать возникновение трещин, которые отрицательно скажутся на качестве пружины.
В домашних условиях обычно используют в качестве жидкой среды мыльный раствор или трансформаторное масло, которое налито в достаточном количестве в емкость. Пружины должны полностью погружаться в нее и остывать там до комнатной температуры.
Изготовленную кустарным способом пружину рекомендуется выдержать на протяжении некоторого времени в сжатом состоянии. Обычно время выдержки лежит в пределах от 20 до 40 часов.
Термообработка пружины с применением доступных средств показана на видео:
Просим тех, кто занимался изготовлением пружин в домашних условиях, поделиться опытом в комментариях к тексту и рассказать, каким способом выполнялась подготовка к навивке, сам процесс изготовления и термическая обработка.