Класс прочности болтов из нержавеющей стали
Класс прочности болтов из нержавеющей стали
mix-73 › Блог › Что вы знаете о болтах?
ОБОЗНАЧЕНИЯ, КЛАСС ПРОЧНОСТИ И РАСЧЕТ НАГРУЗОК ДЛЯ БОЛТОВ
На головке болта должна быть нанесена следующая маркировка:
— клеймо завода изготовителя (JX, THE, L, WT, и др.);
— класс прочности;
— правая резьба не маркируется, если резьба левая — маркируется стрелкой против часовой стрелки.
Винты отличаются от болтов отсутствием маркировки.
Для изделий из углеродистой стали, класс прочности обозначают двумя цифрами через точку.
Пример: 4.6, 8.8, 10.9, 12.9.
Первая цифра обозначает 1/100 номинальной величины предела прочности на разрыв, измеренную в МПа. В случае 8.8 первая 8 обозначает 8 х 100 = 800 МПа = 800 Н/мм2 = 80 кгс/мм2
Вторая цифра — это отношение предела текучести к пределу прочности, умноженному на 10. Из пары цифр можно узнать предел текучести материала 8 х 8 х 10 = 640 Н/мм2.
Значение предела текучести имеет важное практическое значение, поскольку это и есть максимальная рабочая нагрузка болта.
Поясним значения некоторых терминов:
Предел прочности на разрыв — величина нагрузки, при превышении которой происходит разрушение — «наибольшее разрушающее напряжение».
Предел текучести — величина нагрузки, при превышении которой наступает невосстанавливаемая деформация или изгиб. Например, попробуйте согнуть «от руки» обычную стальную вилку или кусок металлической проволоки. Как только она начнет деформироваться, это будет означать, что вы превысили предел текучести ee материала или предел упругости при изгибе. Поскольку вилка не сломалась, а только погнулась, то предел ее прочности больше предела текучести. Напротив, нож скорей всего сломается при определенном усилии. Его предел прочности равен пределу текучести. В этом случае говорят, что ножи «хрупкие».
Японские самурайские мечи — пример классического сочетания материалов с различными характеристиками прочности. Некоторые их виды снаружи сделаны из твердой закаленной стали, а внутри выполнены из упругой, позволяющей мечу не ломаться при боковых изгибающих нагрузках. Такое строение называется «кобу-си» или, иначе, «пол-кулака», то есть «горсть» и при соответствующей длине катаны является очень эффективным решением для боевого клинка.
Другой практический пример: закручиваем гайку, болт удлиняется и после некоторого усилия начинает «течь» — мы превысили предел текучести. В худшем случае может произойти срыв резьбы на болте или гайке. Тогда говорят — резьба «срезалась».
Вот тут есть небольшой ролик с испытанием болтов на разрыв, наглядно демонстрирующий протекающие процессы.
Процент удлинения — это средняя величина удлинения деформируемой детали до её поломки или разрыва. В бытовом плане некоторые виды некачественных болтов называют «пластилиновыми» подразумевая именно термин процент удлинения. Технический термин — «относительное удлинение» показывает относительное (в процентах) приращение длины образца после разрыва к его первоначальной длине.
Твёрдость по Бринеллю — величина, характеризующая твeрдость материала.
Твердость — способность металла противостоять проникновению в него другого, более твердого тела. Метод Бpиннеля применяется для измерения твердости сырых или слабо закалённых металлов.
Для крепежа из нержавеющей стали также наносится маркировка на головке болта. Класс стали — А2 или А4 и предел прочности — 50, 70, 80, например: А2-70, А4-80.
На шпильки с резьбой наносится цветовая маркировка с торца: для A2 – зеленым цветом, для A4 – красным. Значение для предела текучести не указывается.
Пример: Для A4-80 Предел прочности = 80 х 10 = 800 Н/мм2.
Значение 70 – является стандартным пределом прочности нержавеющего крепежа и принимается в расчет пока явно не указано 50 или 80.
Предел текучести для нержавеющих болтов и гаек является справочным значением и составляет около 250 Н/мм2 для A2-70 и около 300 Н/мм2 для A4-80. Относительное удлинение при этом составляет около 40%, т.е. нержавейка хорошо “тянется” после превышения предела текучести, прежде чем наступит необратимая деформация. В сравнении с углеродистыми сталями относительное удлинение для ST-8.8 составляет 12%, а для ST-4.6 соответственно 25%
Отечественный ГОСТ 1759.4-87 МЕХАНИЧЕСКИЕ СВОЙСТВА И МЕТОДЫ ИСПЫТАНИЙ не уделяет внимания вообще расчету нагрузок для нержавеющего крепежа, а также не указывает явно, какой размер резьбы d, d2 или d3 принимается в расчет. В результате сравнения значений из ГОСТа и таблицы размеров метрической резьбы из справочника фирмы FABORY, становится ясно, что это d2 – pitch diameter.
При расчетах болтового соединения для заданной нагрузки используют коэффициент 1/2, а лучше 1/3 от предела текучести. Иногда его называют Коэффициентом запаса, соответственно два или три.
Примеры расчета нагрузки по классу прочности материала и резьбе:
Болт М12 с классом прочности 8.8 имеет размер d2 = 10,7мм и расчетную площадь сечения 89,87мм2.
Тогда максимальная нагрузка составит: ОКРУГЛ( (8*8*10)*89,87 ;0) = 57520 Ньютон, а расчетная рабочая нагрузка — 57520 х 0,5 / 10 = приблизительно 2,87 тонны.
Для болта M12 из нержавеющей стали A2-70 та же расчетная рабочая нагрузка не должна превышать половину значения предела текучести и составит 250 x 89,87 / 20 = приблизительно 1,12 тонны, а для M12 A4-80 – 1,34 тонны.
Сравнительная таблица расчетных* данных нагрузок**
для болтов из углеродистой и из нержавеющей стали.
* Указаны приблизительные значения рабочей нагрузки, как 1/20 от максимальной в Ньютонах
с округлением до 10 в меньшую сторону.
** Расчетные данные рабочих нагрузок приведены в ознакомительных целях и не являются официальными данными.
В сокращенном виде этот материал изложен на последней странице крепежного каталога.
Дополнительные таблицы, сделанные еще перед выходом статьи в 2008 году и добавленные 21.09.2011 спустя почти четыре года. Добавлены сведения для нержавейки A2-50 и высокопрочных ST-10.9. Коэффициент запаса равен двум. Можно перестраховаться и смело делить на тридцать нагрузку в Ньютонах. Кстати, на такелаже именно так и делают, только делят нагрузку на сорок, т.е. принимают запас равным четырем.
Классы прочности нержавеющего крепежа
Механические характеристики болтов, винтов, шпилек из нержавеющих сталей регламентируются ГОСТ Р ИСО 3506-1-2009. Настоящий стандарт классифицирует нержавеющие крепежные изделия по классам прочности, которые принято обозначать двумя цифрами: 50, 70, 80 и писать через дефис с маркой стали: А1-50, А2-70, А4-80. Что означают эти цифры? – это 1/10 часть от минимального предела прочности на растяжение.
Для производства нержавеющего крепежа чаще всего применяются марки стали А2 (пищевая) или А4 (кислотостойкая), обозначенные так в системе EN ISO, или их приближенные аналоги AISI 304 (12X18H10) и AISI 316 (03Х17Н14М2). Крепежные изделия из коррозионно-стойких сплавов аустенитной группы не упрочняются закаливанием в отличие от изделий из черных металлов. Их главным легирующим компонентом являются хром и никель, а также молибден (для марки А4). Процентное содержание этих и других добавок определяет степень коррозионной стойкости крепежа, максимальные рабочие нагрузки и другие свойства.
Примеры обозначения прочности крепежа из нержавейки:
А2-50 – мягкая сталь с пределом прочности на разрыв минимум 500 Н/мм² (500МПа).
А2-70 – холоднодеформированная сталь с пределом прочности на разрыв минимум 700 Н/мм² (700МПа).
А4-80 – высокопрочный сплав с пределом прочности на разрыв минимум 800 Н/мм² (800МПа).
Маркировка наносится на головку болтов (винтов) рядом с клеймом изготовителя, а шпильки маркируются на гладкой части или на торце, если шпилька полнорезьбовая. Иногда на торец шпильки наносится цветовая кодировка марки сплава (для А2 – зеленая, для А4 – красная). Если маркировка класса прочности отсутствует, то в расчет принимается среднее значение – 70.
Для сравнения механических свойств болтов из нержавеющей и углеродистой стали обратимся к таблице:
Группа стали | Углеродистые | Аустенитные А2, А4 | |||||
Класс прочности | 5.6 | 6.8 | 8.8 | 10.9 | 50 | 70 | 80 |
Предел прочности, Н/мм² | 500 | 600 | 800 | 1040 | 500 | 700 | 800 |
Предел текучести, Н/мм² | 300 | 480 | 640 | 940 | 210 | 450 | 600 |
Из таблицы видно, что при близких значениях временного сопротивления, предел текучести у аустенитных сплавов меньше, поэтому они больше подвержены пластической деформации. Это свойство позволяет болтам или шпилькам не ломаться при превышении допустимого момента затяжки или при боковых изгибающих нагрузках. В худшем случае превышение усилия может привести к срыву резьбы. В то время как углеродистые стали более хрупкие и запредельные нагрузки могут привести к излому резьбового крепежа.
Расчет нагрузок для нержавеющих болтов
Зная прочностные характеристики аустенитных сплавов, не трудно рассчитать максимальную нагрузку на болты по формуле. Для примера взят болт М12, А2-70.
Np0.2 = As х Rp0.2 = 84.3 х 450 = 37935 Н, где:
As – расчетная площадь сечения М12 (см. ГОСТ Р ИСО 3506 табл. А.1.)
Rp0.2 – предел текучести
Для определения расчетной рабочей нагрузки полученное значение необходимо разделить как минимум на 20: 37935 / 20 = 1896 кг, а для большей уверенности в безопасности болтокомплекта лучше разделить на 30.
Класс прочности – важнейшая характеристика нержавеющей стали, прописанная в национальном стандарте ГОСТ Р ИСО 3506-1-2009, которую следует учитывать при расчете нагрузки на болтовое или шпилечное соединение.
Евгений Гурьевич
НЕРЖавеющие свойства стали проявляются ИСКЛЮЧИТЕЛЬНО наличием ХРОМа в количестве более 12,6%, а *никель от 8%* повышает её пластичность и свариваемость, а *молибден* — ЖАРОпрочность: 03Х17Н14М2 предназначена для изготовления ВП метизов точением и ГОРЯЧЕЙ формовкой с накаткой.
Дамы и господа! Спасибо вам большое за такую полезную информацию, да ещё и грамотно поданную !
Классы прочности болтов по ГОСТу: особенности и маркировка
Содержание
Подъемный кран упал и раздавил мужчину. Рухнул мост с автомобилями. Внезапно перевернулся КамАЗ… Неутешительные новости о трагедиях появляются регулярно. Причины разные: халатность, невнимательность, безответственность. А еще одна из причин – проблемы с болтовыми соединениями. Казалось бы, такая мелочь! А ведь на болтах в буквальном смысле держится все: они несут вибрационные, весовые и динамические нагрузки. В этой статье мы поговорим о том, какие типы болтов бывают, как узнать класс прочности болта и как читается маркировка.
Типы болтов
У этих метизов есть несколько классификаций по разным параметрам. Например, в зависимости от формы головки они бывают универсальные (с шестигранной головкой), анкерные, рым-болты и др. По форме стержня крепеж тоже различается: резьба наносится на весь стержень или занимает только часть. Сама резьба в соответствии с ГОСТ 27017-86 может быть метрической, шурупной, самонарезающей или конической.
В зависимости от назначения болты делятся на несколько видов: лемешные для сельскохозяйственной техники; мебельные, с гладкой ровной головкой, которая не выступает на поверхности мебели; дорожные для монтажа ограждений и фиксации металлических, деревянных или пластиковых конструкций; машиностроительные для соединения запчастей транспортных средств, обладают особой прочностью и стойкостью к изменениям от воздействия агрессивной внешней среды; фундаментные служат для крепления оборудования к фундаменту, имеют специальную форму головки; путевые соединяют части рельс.
Обратите внимание! Не существует универсальных болтов, которые подойдут для любой задачи. Для каждой нужно выбирать крепеж в соответствии с его классом прочности. Именно класс прочности болта влияет на безопасность конструкций, разрушение которых может привести к гибели людей.
Класс прочности – это наиболее важная характеристика для крепежа. Определяет устойчивость болтов к механическим воздействиям и показывает предел прочности на разрыв. Остановимся на ней подробнее.
Классы прочности
В ГОСТ 1759.4-87 (ИСО 898/1-78) можно найти обозначение класса прочности болтов. Характеристика зависит от множества факторов, например, от стали, из которой выполнен болт, и от того, была ли термообработка материала. Приведем список классов прочности и их основные параметры.
Классы от 3.6 до 6.8
Материал: углеродистая сталь
Возможные добавки: нет
Термическая обработка: нет
Класс 8.8
Материал: углеродистая сталь
Возможные добавки: бор, марганец, хром
Термическая обработка: закалка и отпуск при температуре 425 °С
Класс 9.8
Материал: углеродистая сталь
Возможные добавки: бор, марганец, хром
Термическая обработка: закалка и отпуск при температуре 425 °С
Класс 10.9
Материал: углеродистая или легированная сталь
Возможные добавки: бор, марганец, хром
Термическая обработка: закалка и отпуск при температуре 340 или 425 °С
Класс 12.9
Материал: легированная сталь
Возможные добавки: нет
Термическая обработка: закалка и отпуск при температуре 380 °С
Чем легированная сталь отличается от углеродистой? Тем, что в ней содержится молибден, титан, вольфрам или другие добавки. Они улучшают эксплуатационные характеристики, увеличивают твердость, плотность и термостойкость материала.
Часто болты покрывают другим материалом для улучшения их свойств:
- цинком – для болтов, которые используются в промышленности, толщина покрытия доходит до 25 мкм;
- никелем – декоративное покрытие болтов для мебели, не влияет на прочность;
- фосфатами или оксидами – так можно создать защитный слой, который сделает крепеж более долговечным;
- цинк-ламельным покрытием – увеличивает срок службы болта вдвое.
Что такое термическая обработка стали и зачем она нужна? Это технологический процесс изменения структуры материала, в результате которого повышается предел выносливости стали, увеличивается прочность и износостойкость самого крепежа.
Обратите внимание! Классы прочности могут маркироваться как с точкой, например 3.6, так и без нее, например 36.
Механические свойства
Чтобы правильно подобрать крепеж, нужно не только ориентироваться на класс прочности, но и знать, какие характеристики за ним скрываются. От этого зависит назначение метиза. Например, болты низкой прочности класса до 6.6 подойдут для монтажа козырька надо крыльцом. Класс прочности высокопрочных болтов – от 6.6 до 12.9. Их используют при строительстве кранов, мостов, зданий, транспорта, железнодорожных путей. Это же значение определяет, может ли на крепеж прилагаться несущая силовая нагрузка.
В таблице ниже мы приведем класс прочности болтов. Расшифровка терминов до таблицы поможет вам сориентироваться в свойствах крепежа по ГОСТ 1759.4-87 (ИСО 898/1-78).
- Временное сопротивление – это предел прочности болта, максимальная сила, которая может быть к нему приложена. При достижении критического параметра крепеж разрушится. Это действует для любого вида механической силы: сжатия, изгиба, скручивания, растяжения.
- Твердость по Виккерсу – это отношение нагрузки вдавливания четырехгранной алмазной пирамиды противоположным углом к площади поверхности того предмета, на который воздействует сила. Простыми словами, это значение определяет, насколько устойчив болт к деформации от удара/соприкосновения с другим предметом.
- Предел текучести – это максимальная рабочая нагрузка на болт. Если будет достигнута, начнется необратимая деформация без увеличения нагрузки (можно сказать, саморазрушение). При расчетах нагрузки следует выбирать болты, которые превышают необходимые требования вдвое.
Механические свойства болтов в зависимости от класса прочности
Класс прочности | Временное сопротивление, МПа | Твердость по Виккерсу, HV | Предел текучести, МПа |
3.6 | 300 – 330 | 95 – 250 | 180 – 190 |
4.6 | 400 – 400 | 120 – 250 | 240 |
4.8 | 400 – 420 | 130 – 250 | 320 – 340 |
5.6 | 500 | 155 – 250 | 300 |
5.8 | 500 – 520 | 160 – 250 | 400 – 420 |
6.6 | 600 | 190 – 250 | 360 – 480 |
6.8 | 600 | 190 – 250 | 640 |
8.8 | 800 – 830 | 250 – 335 | 640 – 660 |
9.8 | 900 | 290 – 360 | 720 |
10.9 | 1000 – 1040 | 320 – 380 | 900 – 940 |
12.9 | 1200 – 1220 | 385 – 435 | 1080 – 1100 |
Зная класс прочности, можно рассчитать среднее временное сопротивление самостоятельно. Для этого умножьте первую цифру класса прочности на 100. Например, для болта 6.6 это значение будет 600. Также можно рассчитать предел текучести, умножив временное сопротивление на вторую цифру класса прочности и поделив полученный результат на 10. Для того же болта 6.6 это будет выглядеть так: 600×6÷10 = 360.
Маркировка
В соответствии с ГОСТ 1759.0-87 (СТ СЭВ 4203-83) на каждый болт ставится знак класса прочности и клеймо изготовителя. В зависимости от размера болта их наносят на торцевую или боковую поверхность головки. Также производитель может указать дополнительные характеристики крепежа. Пример показан на рисунке.
1 (буква D) – клеймо или товарный знак изготовителя.
2 (11.14) – числовое значение указывает на номер плавки.
3 (10.9) – класс прочности шестигранных болтов. Если не указан, значит, он меньше 6.
4 (S) – болт имеет шестигранную головку, которая превышает стандартный размер.
5 (ХЛ) – климатическое исполнение: ХЛ – для холодного климата до -65 °С; У – для умеренного климата до -40 °С.
Обратите внимание! В статье приводится маркировка болтов по ГОСТ. Существуют международные стандарты, например DIN или ISO. Не стоит пугаться, если на крепеж нанесены другие обозначения.
Надеемся, наша шпаргалка и таблица классов прочности болтов поможет вам с выбором. Подобрать крепеж можно на этой странице. Если остались вопросы, звоните нашему менеджеру – он вас проконсультирует.
Механические свойства крепежных изделий из коррозионно-стойкой нержавеющей стали. Часть 1. Болты, винты и шпильки
Стандарт устанавливает механические свойства болтов, винтов и шпилек, изготовленных из аустенитных, мартенситных и ферритных коррозионно-стойких нержавеющих сталей при испытании в условиях с температурой окружающей среды от 15 град. С до 25 град. С. Механические свойства изменяются при повышении или понижении температуры. Стандарт распространяется на болты, винты и шпильки: — c номинальным диаметром резьбы d до 39 мм включительно; — с треугольной метрической резьбой, с диаметром и шагом по ИСО 68-1, ИСО 261 и ИСО 262; — любой конструкции. Стандарт не распространяется на болты, винты и шпильки со специальными свойствами, такими как свариваемость. Стандарт не устанавливает требования к коррозионной стойкости или стойкости к окислению в особых условиях окружающей среды. Часть информации о материалах, для особых условий окружающей среды, приведена в приложении Е. Определения коррозии и коррозионной стойкости — по ИСО 8044. Стандарт устанавливает классификацию по классам прочности крепежных изделий из коррозионно-стойкой нержавеющей стали. Некоторые из этих сталей допускается применять при низких температурах до минус 200 град. С, другие — при высоких температурах среды до 800 град. С
ФЕДЕРАЛЬНОЕ АГЕНТСТВО
ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ
НАЦИОНАЛЬНЫЙ
СТАНДАРТ
РОССИЙСКОЙ
ФЕДЕРАЦИИ
ГОСТ Р ИСО
3506-1-2009
МЕХАНИЧЕСКИЕ СВОЙСТВА КРЕПЕЖНЫХ ИЗДЕЛИЙ ИЗ
КОРРОЗИОННО-СТОЙКОЙ НЕРЖАВЕЮЩЕЙ СТАЛИ
Болты, винты и шпильки
ISO 3506-1:1997
Mechanical properties of corrosion-resistant
stainless steel fasteners
Part 1: Bolts, screws and studs
Стандартинформ
Предисловие
Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. № 184-ФЗ «О техническом регулировании», а правила применения национальных стандартов Российской Федерации — ГОСТ Р 1.0-2004 «Стандартизация в Российской Федерации. Основные положения»
Сведения о стандарте
1 ПОДГОТОВЛЕН Федеральным государственным унитарным предприятием «Всероссийский научно-исследовательский институт стандартизации и сертификации в машиностроении» (ВНИИНМАШ) на основе собственного аутентичного перевода на русский язык стандарта, указанного в пункте 4
2 ВНЕСЕН Техническим комитетом по стандартизации ТК 229 «Крепежные изделия»
3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 10 декабря 2009 г. № 695-ст
При применении настоящего стандарта рекомендуется использовать вместо ссылочных международных стандартов соответствующие им национальные стандарты Российской Федерации и действующим в этом качестве межгосударственным стандартам, сведения о которых приведены в дополнительном приложении ДА
5 ВВЕДЕН ВПЕРВЫЕ
Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом информационном указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячно издаваемых информационных указателях «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет
НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ
МЕХАНИЧЕСКИЕ СВОЙСТВА КРЕПЕЖНЫХ ИЗДЕЛИЙ ИЗ
КОРРОЗИОННО-СТОЙКОЙ НЕРЖАВЕЮЩЕЙ СТАЛИ
Болты, винты и шпильки
Mechanical properties of corrosion-resistant stainless steel fasteners.
Part 1. Bolts, screws and studs
Дата введения — 2011-01-01
1 Область применения
Настоящий стандарт устанавливает механические свойства болтов, винтов и шпилек, изготовленных из аустенитных, мартенситных и ферритных коррозионно-стойких нержавеющих сталей при испытании в условиях с температурой окружающей среды от 15 °С до 25 °С. Механические свойства изменяются при повышении или понижении температуры.
Стандарт распространяется на болты, винты и шпильки:
— с номинальным диаметром резьбы d до 39 мм включительно;
— с треугольной метрической резьбой, с диаметром и шагом по ИСО 68-1, ИСО 261 и ИСО 262;
Настоящий стандарт не распространяется на болты, винты и шпильки со специальными свойствами, такими как свариваемость.
Настоящий стандарт не устанавливает требования к коррозионной стойкости или стойкости к окислению в особых условиях окружающей среды. Часть информации о материалах, для особых условий окружающей среды, приведена в приложении Е. Определения коррозии и коррозионной стойкости — по ИСО 8044.
Настоящий стандарт устанавливает классификацию по классам прочности крепежных изделий из коррозионно-стойкой нержавеющей стали. Некоторые из этих сталей допускается применять при низких температурах до минус 200 °С, другие — при высоких температурах среды до 800 °С. Информация о влиянии температуры на механические свойства приведена в приложении F .
Коррозионная стойкость, окисляемость и механические свойства при повышенных и пониженных температурах должны быть согласованы между изготовителем и потребителем в каждом конкретном случае. Изменение риска межкристаллитной коррозии при повышении температуры в зависимости от содержания углерода показано в приложении G.
Все крепежные изделия из аустенитных нержавеющих сталей при нормальных условиях — немагнитные; после холодного деформирования могут проявиться магнитные свойства (см. приложение Н).
2 Нормативные ссылки
Следующие ниже нормативные стандарты содержат положения, которые посредством ссылок в данном тексте составляют положения настоящего стандарта. Для нормативных стандартов с указанием даты публикации, на которые имеются ссылки, не распространяется действие последующих изменений или пересмотров этих стандартов.
ИСО 68-1 Резьбы ИСО винтовые общего назначения. Основной профиль. Часть 1. Метрические винтовые резьбы (ISO 68-1, ISO general purpose screw threads — Basic profile — Part 1: Metric screw threads)
ИСО 261 Резьбы метрические ИСО общего назначения. Общий вид (ISO 261, ISO general purpose metric screw threads — General plan)
ИСО 262 Резьбы ИСО метрические общего назначения. Выбранные размеры для винтов, болтов и гаек (ISO 262, ISO general purpose metric screw threads — Selected sizes for screws, bolts and nuts)
ИСО 724:1993 Резьбы метрические ИСО общего назначения. Основные размеры (ISO 724, ISO general purpose metric screw threads — Basic dimensions)
ИСО 898-1:1999 Механические свойства крепежных изделий из углеродистой и легированной стали. Часть 1. Болты, винты и шпильки (ISO 898-1:1999, Mechanical properties of fasteners made of carbon steel and alloy steel — Part 1: Bolts, screws and studs)
ИСО 3651-1 Стали нержавеющие. Определение стойкости к межкристаллитной коррозии. Часть 1. Аустенитные и ферритно-аустенитные (дуплекс) нержавеющие стали. Коррозионное испытание в азотной кислоте посредством измерения потери массы (метод Хью) (ISO 3651-1, Determination of resistance to intergranular corrosion stainless steels — Part 1: Austenitic and ferritic-austenitic (duplex) stainless steels — Corrosion test in nitric acid medium by measurement of loss in mass (Huey test)
ИСО 3651-2 Стали нержавеющие. Определение стойкости к межкристаллитной коррозии. Часть 2. Ферритные, аустенитные и ферритно-аустенитные (дуплекс) нержавеющие стали. Коррозионное испытание в среде, содержащей серную кислоту (ISO 3651-2, Determination of resistance to intergranular corrosion steels — Part 2: Ferrictic, austenitic and ferritic-austenitic (duplex) stainless steels — Corrosion test in media containing sulfuric acid)
ИСО 6506:1981 Материалы металлические. Испытание на твердость. Определение твердости по Бринеллю (ISO 6506:1981, Metallic materials — Hardness test — Brinell test)
ИСО 6507-1:1997 Материалы металлические. Испытание на твердость по Виккерсу. Часть 1. Метод испытаний (ISO 6507-1:1997, Metallic materials — Hardness test — Vickers test — Part 1: Test method)
ИСО 6508:1986 Материалы металлические. Испытание на твердость. Определение твердости по Роквеллу (шкалы А, В, С, D, E, F, G, Н, К) (ISO 6508:1986, Metallic materials — Hardness test — Rockwell test (scales A — B — C — D — E — F — G — H — K)
ИСО 6892 Материалы металлические. Испытание на растяжение (ISO 6892 Metallic materials — Tensile testing at ambient temperature)
ИСО 8044 Коррозия металлов и сплавов. Общие термины и определения (ISO 8044, Corrosion of metals and alloys — Basic terms and definitions)
3 Обозначения, маркировка и обработка
Система обозначений марок нержавеющей стали и классов прочности болтов, винтов и шпилек приведена на рисунке 1. Обозначение материала состоит из двух частей, разделенных дефисом. Первая часть обозначает марку стали, вторая часть — класс прочности.
Обозначение марки стали (первая часть) состоит из буквы:
А — аустенитная сталь;
С — мартенситная сталь;
F — ферритная сталь,
которая обозначает класс стали, и цифры, которая обозначает диапазон предельных значений химического состава этого класса стали.
Обозначение класса прочности (вторая часть) состоит из двух цифр, которые обозначают 0,1 минимального предела прочности на разрыв.
Примеры обозначения:
1 — аустенитной нержавеющей стали, холоднодеформированной, с пределом прочности на разрыв не менее 700 Н/мм 2 (700 МПа) — А2-70.
2 — мартенситной стали, закаленной и отпущенной, с пределом прочности на разрыв не менее 700 Н/мм 2 (700 МПа) — С4-70.
1) Классы стали, классифицированные по рисунку 1, описаны в приложении В и определены химическим составом по таблице 2.
2) Нержавеющие стали с содержанием углерода не более 0,03 % могут быть дополнительно промаркированы буквой L.
Пример — A 4 L -80
Рисунок 1 — Система обозначений марок нержавеющей стали и классов прочности болтов, винтов и шпилек
3.2 Маркировка
Крепежные изделия, удовлетворяющие всем требованиям настоящего стандарта, маркируют и(или) обозначают в соответствии с 3.1.
3.2.1 Болты и винты
Все болты и винты с шестигранной головкой и винты с внутренним шестигранником в головке, номинальным диаметром резьбы d ≥ 5 мм должны иметь четкую маркировку в соответствии с 3.1, рисунками 1 и 2. Маркировка обязательна и должна включать в себя марку стали и класс прочности, а также товарный знак изготовителя. Другие типы болтов и винтов следует маркировать аналогично, где это возможно, и только на головке. Допускается наносить дополнительную маркировку, если она не вызывает путаницу.
3.2.2 Шпильки
Шпильки номинальным диаметром резьбы d ≥ 6 мм должны иметь маркировку в соответствии с 3.1, рисунками 1 и 2. Маркировку выполняют на гладкой части шпильки, и она должна включать в себя товарный знак изготовителя, марку стали и класс прочности. Если маркировка на гладкой части невозможна, то допускается маркировка марки стали только на гаечном конце шпильки (см. рисунок 2).
1 Знак изготовителя.
3 Класс прочности.
Маркировка болтов и винтов с шестигранной головкой
Маркировка винтов с внутренним шестигранником в головке (варианты маркировки)
Примечание — Маркировка левой резьбы — по ИСО 898-1
Рисунок 2 — Маркировка болтов, винтов и шпилек
3.2.3 Упаковка
На всех упаковках любых размеров должна быть маркировка с указанием обозначения изделия и товарного знака изготовителя.
3.3 Завершающая обработка
Если не указано иное, крепежные изделия в соответствии с настоящим стандартом поставляют чистыми без дополнительной обработки. Для достижения максимальной коррозионной стойкости рекомендуется пассивация.
4 Химический состав
Химический состав нержавеющих сталей для крепежных изделий согласно настоящему стандарту приведен в таблице 1.
Выбор химического состава в установленных для марки стали пределах — на усмотрение изготовителя, если химический состав не согласован между изготовителем и потребителем.
В случаях возникновения риска межкристаллитной коррозии рекомендуется проведение испытаний по ИСО 3651-1 или ИСО 3651-2. В таких случаях рекомендуется применять стабилизированные нержавеющие стали A3 и А5 или нержавеющие стали А2 и А4 с содержанием углерода не более 0,03 %.
Таблица 1 — Марки нержавеющей стали. Химический состав
А2, А4 — Характеристика крепежных изделий из нержавеющих сталей
Нержавеющие стали А2, А4: структура, механические свойства, химический состав. Крепеж из стали А2, А4 (нержавеющие болты, винты, гайки, шайбы, шпильки и т. д. ): механические свойства, значения моментов затяжки и усилий предварительной затяжки.
Характеристики нержавеющих сталей
Аустенитные стали содержат 15-26% хрома и 5-25% никеля, которые увеличивают сопротивление коррозии и практически не магнитны.
Именно аустенитные хромникелевые стали обнаруживают особенно хорошие сочетание обрабатываемости, механических свойств и коррозионной стойкости. Эта группа сталей наиболее широко используется в промышленности и в производстве элементов крепежа: нержавеющих болтов, гаек, резьбовых шпилек, винтов, а также шайб.
Стали аустенитной группы обозначаются начальной буквой «A» с дополнительным номером, который указывает на химический состав и применяемость в пределах этой группы:
Аустенитная структура
Группа стали | Номер материала | Краткое обозначение | Номер по AISI |
---|---|---|---|
А1 | 1.4305 | X 10 CrNiS 18-9 | AISI 303 |
А2 | 1.4301 / 1.4303 | X 5 CrNi 18-10 / X 4 CrNi 18-12 | AISI 304 / AISI 305 |
А3 | 1.4541 | X 6 CrNiTi 18-10 | AISI 321 |
А4 | 1.4401 / 1.4404 | X 5 CrNiMo 18-10 / X 2 CrNiMo 18-10 | AISI 316 / AISI 316 L |
А5 | 1.4571 | X 6 CrNiMoTi 17-12-2 | AISI 316 TI |
Сталь A2 (AISI 304 = 1.4301 = 08Х18Н10) — нетоксичная, немагнитная, незакаливаемая, устойчивая к коррозии сталь. Легко поддается сварке и не становится при этом хрупкой. Может проявлять магнитные свойства в результате механической обработки (шайбы и некоторые виды шурупов). Это наиболее распространенная группа нержавеющих сталей. Ближайшие аналоги — 08Х18Н10 ГОСТ 5632, AISI 304 и AISI 304L (с пониженным содержанием углерода).
Крепеж и изделия из стали A2 подходят для использования в общестроительных работах (например, при монтаже вентилируемых фасадов, витражных конструкций из алюминия), при изготовлении ограждений, насосной техники, приборостроения из нерж. стали для нефтегазодобывающей, пищевой, химической промышленности, в судостроении. Сохраняет прочностные свойства при нагреве до 425°C, а при низких температурах до -200°C.
Сталь A4 (AISI 316 = 1.4401 = 10Х17Н13М2) — отличается от стали А2 добавлением 2-3% молибдена. Это значительно увеличивает ее способность сопротивляться коррозии и воздействию кислот. Сталь А4 имеет более высокие антимагнитные характеристики и абсолютно не магнитна. Ближайшие аналоги — 10Х17Н13М12 ГОСТ 5632, AISI 316 и AISI 316L (с низким содержанием углерода).
Крепеж и такелажные изделия из стали A4 рекомендуются для использования в судостроении. Крепеж и изделия из стали A4 подходят для использования в кислотах и средах содержащих хлор (например, в бассейнах и соленой воде). Может использоваться при температурах от -60 до 450°С.
Классы прочности
Все аустенитные стали (от «А1» до «А5») подразделяются на три класса прочности независимо от марки. Наименьшую прочность имеют стали в отожженном состоянии (класс прочности 50).
Поскольку аустенитные стали не упрочняются закалкой, наибольшую прочность они имеют в холоднодеформированном состоянии (классы прочности 70 и 80). Наиболее широко используется крепеж из сталей А2-70 и А4-80.
Все о прочности болтов
- Основные классы
- Основные виды болтов
- Маркировка
- Как узнать?
Большой ассортимент на рынке представляют крепежные составляющие. Они могут применяться как для обычного соединения различных частей конструкций, так и для того, чтобы система выдерживала увеличенные нагрузки, была более надежна.
Выбор категории прочности болтов напрямую зависит от того, с какими целями будет использована конструкция.
Основные классы
Болт представляет собой крепежный элемент цилиндрической формы с резьбой снаружи. Обычно имеет шестигранную головку, сделанную под гаечный ключ. Соединение происходит при помощи гайки либо другого отверстия с резьбой. До создания винтовых крепежей болтами называли любые изделия в форме стержня.
Конструктивное устройство болта выглядит следующим образом.
Головка
С ее помощью остальной части крепежа передается крутящий момент. Она может иметь шестигранную, полукруглую, полукруглую с винтом, цилиндрическую, цилиндрическую с шестигранным углублением, потайную и потайную с винтом формы.
Стержень цилиндрической формы
Делится на несколько видов:
- стандартный;
- для установки в отверстие, имеющее зазор;
- для монтажа в отверстие, обработанное разверткой;
- со стержнем уменьшенного диаметра без резьбы.
Гайка
Может быть следующих форм:
- круглая;
- гайка-барашек;
- шестигранная (с фасками низкими/высокими/нормальными, корончатая и прорезная).
Существует множество типов болтов, все зависит от того, какими качествами при эксплуатации должна обладать изготавливаемая конструкция. Класс прочности болтов описывает их механические свойства.
Опираясь на самые популярные таблицы, можно понять, что данный класс является основным.
Прочность — это свойство изделия, характеризующееся сопротивлением к разрушению со стороны внешних факторов. Любой производитель обязательно указывает прочность изделия для того, чтобы при монтаже или сборке было понятно, подходят ли крепежи для тех или иных случаев. Измеряется прочность двумя цифрами, разделенными точкой, либо двузначным и однозначным числом, также разделенными точкой:
- 3.6 — соединительные элементы, изготовленные из нелегированной стали, дополнительная закалка не применяется;
- 4.6 — для производства использована углеродистая сталь;
- 5.6 — изготавливаются из стали без заключительного отпуска;
- 6.6, 6.8 — метизы из углеродистой стали, без примесей;
- 8.8 — в сталь добавляются такие компоненты, как хром, марганец или бор, дополнительно происходит отпуск готового металла при температуре выше 400°С;
- 9.8 — имеет минимум отличий от предыдущего класса и более высокую прочность;
- 10.9 — для производства таких болтов берется сталь с дополнительными добавками и отпуском 340-425°С;
- 12.9 — применяется нержавеющая или легированная сталь.
Первое число означает предел прочности (1/100 Н/мм2 или 1/10 кг/мм2), то есть 1 миллиметр квадратный болта 3.6 выдержит на разрыв 30 килограмм. Второе число — это соотношение предела текучести к пределу прочности в процентах. То есть болт 3.6 не будет деформироваться до усилия 180 Н/мм2 или 18 кг/мм2 (60% от предела прочности).
Исходя из значений прочности, соединяющие болты делятся на следующие варианты.
- Функционирующие на растяжение-разрыв по внутреннему диаметру болта. Чем выше прочность крепежа, тем больше вероятность, что болт деформируется при нагрузке, то есть растянется.
- Функционирующие на срез болта по двум плоскостям. Чем меньше прочность, тем выше вероятность, что крепление разрушится.
- Функционирующие на растяжение и срез — происходит срез головки болта.
- Фрикционные — тут происходит смятие материала под крепежом, то есть функционирующие на срез, но с большим натяжением крепежей.
Предел текучести — это наибольшая нагрузка, при увеличении которой происходит деформация, в дальнейшем не подлежащая восстановлению, то есть винтовое соединение увеличится в длину после определенных действий. Чем большую тяжесть выдерживает конструкция, тем выше показатель текучести. Рассчитывая нагрузку, обычно берут 1/2 или 1/3 от предела текучести. В качестве примера можно рассмотреть кухонную ложку — если согнуть ее в одну сторону, получится другой предмет. Текучесть нарушилась — это привело к деформации, но сам материал не сломался. Можно сделать вывод, что упругость стали выше ее текучести.
Другой предмет — нож, при сгибании сломается. Следовательно, сила прочности и текучести одинакова. Изделия с такими характеристиками еще называют хрупкими. Предел на растяжение — изменение размера и формы материала под действием внешних факторов, изделие при этом не разрушается. Иными словами, это процент удлинения материала по сравнению с изначальным образцом. Данная характеристика показывает длину болта до поломки. Классификация по размерам – чем больше площадь, тем больше сопротивление скручиванию.
Длина болта выбирается в соответствии с толщиной соединяемых частей.
Крепежи делятся и по такому показателю, как точность. В производстве используются разные способы нарезки резьбы и обрабатывания поверхности. Она может быть повышенной, нормальной и грубой.
- С – грубая точность. Данные крепежи подходят для отверстий на 2-3 миллиметра больше самого стержня. При такой разности диаметров соединения могут сдвигаться.
- В – нормальная точность. Соединительные элементы устанавливаются в отверстия на 1-1.5 миллиметра шире стержня. Поддаются меньшей деформации по сравнению с предыдущим классом.
- А – высокая точность. Отверстия для данной группы болтов могут быть шире на 0.25-0.3 миллиметра. Крепежи имеют достаточно высокую стоимость, так как производят их методом точения.
Для крепежей, изготовленных из нержавеющей стали, указывают не класс, а предел прочности на разрыв, обозначение у них другое — А2 и А4, где:
- А — это аустенитная структура стали (высокотемпературное железо с кристаллической ГКЦ-решеткой);
- числа 2 и 4 — это обозначение химического состава материала.
Нержавеющие болты имеют 3 показателя прочности — 50, 70, 80. При производстве высокопрочных болтов используют сплавы с большей твердостью и прочностью. Такие материалы стоят дороже углеродистой стали. Класс прочности варьируется – 6.6, 8.8, 9.8, 10.9, 12.9. Также для повышения показателей проводится этап термической обработки, которая изменяет химический состав и строение материала. Возможная эксплуатация в условиях температур ниже 40°С — имеет обозначение У. 40-65°С маркируется как ХЛ.
Твердость болтов — это способность материала сопротивляться проникновению в его поверхность другого тела. Характеристика твердости болтов измеряется по Бринеллю, Роквеллу и Виккерсу. Испытания твердости по Бринеллю проводятся на твердомере, индетором (вдавливаемый предмет) служит закаленный шарик, диаметр которого равен 2.5, 5 или 10 миллиметров. Размер зависит от толщины проверяемого материала. Вдавливание происходит в течение 10-30 секунд, время также зависит от испытуемого материала. Затем полученный отпечаток при помощи лупы Бринелля измеряют в двух направлениях. Соотношение приложенной нагрузки к поверхности отпечатка и есть определение твердости.
Метод Роквелла также основан на вдавливании. В качестве индетора для твердых сплавов выступает алмазный конус, для более мягких — шарик из стали диаметром 1.6 миллиметров. В данном методе испытание проводится в две фазы. Сначала прикладывается предварительная нагрузка для плотного соприкосновения материала и наконечника. Затем в течение небольшого времени идет основная нагрузка. После того как рабочую нагрузку убирают, измеряется твердость. То есть расчеты будут происходить по глубине, на которой остался индетор, с приложенной предварительной нагрузкой. В данном методе выделяется 3 группы твердости:
- HRA — для особо твердых металлов;
- HRB — для относительно мягких металлов;
- HRC — для относительно твердых металлов.
Твердость Виккерса определяется по ширине отпечатка. Вдавливаемым наконечником служит алмазная пирамида с четырьмя гранями. Измеряется расчетом соотношения нагрузки к площади полученной отметки. Замеры производятся под микроскопом, установленным на оборудовании. Данный метод отличается повышенной точностью и сверхчувствительностью. Применяемые способы измерения по ГОСТ в советские времена не позволяли определять все максимально допустимые нагрузки на крепежи, поэтому изготавливаемые материалы были низкого качества.