Защита по току
По видам контролируемого параметра защиты подразделяются на:
- токовые
- напряжения
- дистанции (сопротивления линии)
- частоты
- мощности и др.
По принципу действия бывают:
- основные защиты
- резервные защиты
По способам обеспечения селективности подразделяются на:
- защиты с относительной селективностью
- защиты с абсолютной селективностью
Защиты с относительной селективностью могут работать как при коротких замыканиях на защищаемом объекте, так и при повреждениях на смежных присоединениях в режиме резервирования. К таким защитам относятся токовые защиты, защиты напряжения, дистанционные защиты.
Защиты с абсолютной селективностью работают только при коротком замыкании на защищаемом участке. К таким защитам относятся дифференциальные и дифференциально-фазные защиты.
Устройства для защиты выпрямителей от перегрузки и коротких замыканий изобретались давно. Из предназначение банально — ограничивать ток или просто отключать блок питания или выпрямитель в моменты когда токи в цепи нагрузки превышают допустимые пределы.
В журнале РАДИО N10 за 1971 год была опубликована схема для защиты выпрямителей питающих ламповые приемники и усилители.
Отрадно видеть простоту схемы и отсутствие ламп и лишних элементов. Лампа МН-3 служит для индикации и роли в защите выпрямителя не играет.
Но, с появлением полупроводников в широком доступе и пропаганде пренебрежительного отношения к релейным схемам, вместо простых и надежных схем стали появляться устройства на транзисторах.
ПРИНЦИП РАБОТЫ СХЕМЫ
прост — Резистор R1 должен открывать транзистор КТ815 максимально. Понятно, что деже полностью открытый , этот транзистор при больших токах будет греться как утюг и потребуется установка его на радиатор.
Транзистор КТ315 в рабочем состоянии должен быть закрыт — это обеспечивает резистор R2 «притягивая» базу КТ315 к земле (минусу).
Резистор R3 (очень мощный) нужен для того чтобы организовать положительное смещение для транзистора КТ315 в момент превышения тока в нагрузке.
Как только потенциал базы КТ315 становится выше «оттягивается от минуса» за счет низкого сопротивления , КТ315 открывается и запирает силовой транзистор КТ815 «притягивая» его базу к минусу.
Сразу понятно, что для таких схем требуется очень мощное сопротивление и силовой транзистор.
Немаловажный недостаток таких схем — постоянный нагрев из за токов через резистор и через переход транзистора, сопротивление которого никогда не будет равным нулю.
Избавиться от недостатков биполярного транзистора можно применив в схеме полевик
Такая схема весьма коварна и имеет свои тонкости.
Все те полевики что на ней указаны не совсем хорошо для этой схемы подходят. Чтение таблиц с указанием предельных токов и сопротивлений открытого транзистора — даст вам ясную картину — какие полевики стоит использовать. Выбирать нужно самые мощные но с минимальным сопротивлением открытого канала.
С транзистором управления С945 тоже не все гладко. Эти транзисторы часто имеют очень высокий коэффициент усиления , что приводит к странному поведению схемы при включении в бытовую сеть. С945 может реагировать на помехи и всплески приходящие по сети питания, так что в нагрузке вместо «гладкого и ровного» тока будет наблюдаться «картина маслом» состоящая из всплеском и провалов усиленных транзистором С945 помех переданных на затвор силового полевика IRF.
Еще один немаловажный момент — Эта схема нечто вроде триггера и сработав один раз в исходное состояние она не переходит — Приходится нажимать кнопку для сброса.
Схема на биполярниках сама переходит в рабочий режим — ведь она есть просто вариация регулятора тока или стабилизатора и конечно имеет «провисающее» состояние когда ток слегка не достиг критической точки и приоткрытый мощный транзистор начинает перегреваться со всеми вытекающими последствиями.
ВСЕХ ЭТИХ НЕДОСТАТКОВ ЛИШЕНЫ СХЕМЫ НА РЕЛЕ
Схемы защиты от короткого замыкания и перегрузок в блоке питания
Короткое замыкание (и перегрузка, как частный случай), являются самой опасной аварийной ситуацией при эксплуатации блока питания. И дело не только в повышенной вероятности выхода из строя элементов силовой цепи БП. Термическое действие многократно выросшего тока может привести к возгоранию изоляции проводников и дальнейшему развитию пожара.
У мощных БП также могут возникнуть значительные динамические усилия в токоведущих элементах, исходом которых будет смещение проводников и их механическое повреждение. Поэтому защита от КЗ для источников питания – не роскошь, а насущная необходимость.
Принцип работы защиты от короткого замыкания
Большинство схем представляют собой отдельный узел, который можно применить в любом устройству (с поправкой на номинальный ток). Его можно встроить в уже имеющийся блок питания или собрать в отдельном корпусе.
Короткое замыкание сопровождается двумя явлениями:
- увеличение тока;
- снижение напряжения (чем ближе к месту КЗ, тем больше снижение, а в месте короткого замыкания оно равно нулю).
Большинство устройств защиты используют первый признак. Датчиком тока обычно служит резистор с номиналом от нескольких сотых до единиц Ом. Проходящий ток создает пропорциональное падение напряжение на шунте – чем больше ток, тем больше напряжение. Схема сравнения сравнивает это напряжение с заданным уровнем, и, при достижении порога, дает сигнал на размыкание ключевого элемента, ток прерывается. Узел индикации подает световой или звуковой сигнал о срабатывании защиты. Недостаток такого решения – КЗ может произойти до места установки измерительного шунта, и тогда защита не сработает.
В импульсных блоках питания с ШИМ-регулированием защита может быть построена несколько по-другому.
Ток измеряется непосредственно в цепи импульсного трансформатора. Напряжение так же сравнивается с заданным значением, при превышении происходит воздействие на ШИМ-регулятор. Генерация либо прекращается полностью, либо напряжение снижается до безопасного уровня. Минусом является ограниченная область (только БП с PWR-регулированием) и привязка к конкретной схемотехнике БП. Зато сверхток контролируется на всех участках силовой цепи.
Примеры схем и их описание
Схемы защиты блока питания от замыкания на выходе или перегрузки строятся на разной элементной базе. Их можно разделить по типу применяемого в качестве ключа элемента.
На биполярном транзисторе
Несложную защиту от КЗ можно собрать на биполярном транзисторе. В качестве измерительного шунта применено сопротивление на 0,5 Ом.
В исходном положении транзистор T1 открыт (через резистор R1). Транзистор T2 закрыт. При увеличении тока через шунт и достижения на нем напряжения, достаточного для открывания транзистора T2, на базе T1 напряжение падает почти до нуля, он закрывается, прерывая ток. При этом загорается светодиод, сигнализируя о КЗ. При уменьшении тока ниже предела, схема возвращается в исходное положение.
При напряжении БП выше 25 и ниже 8 вольт, возможно, придется подобрать резистор R1 так, чтобы ключевой транзистор был надежно открыт. Резистор R3 можно применить готовый керамический или сделать из нихрома.
Ток срабатывания устанавливается подбором сопротивления шунта – чем оно выше, тем при меньшем токе сработает защита. Также на ток срабатывания влияет сопротивление резистора R2 и коэффициент усиления транзистора T2, в качестве которого может быть применен любой маломощный прибор структуры n-p-n. Рабочий ток ограничен наибольшим током коллектора ключа, в качестве которого может быть применен мощный транзистор n-p-n.
Тип транзистора | Максимальный ток коллектора, А |
---|---|
КТ819 | 10 |
КТ729А(Б) | 30(20) |
2N5490 | 7 |
2N6129 | 7 |
2N6288 | 7 |
BD291 | 6 |
BD709 | 6 |
Врожденный недостаток подобного схемотехнического решения – через ключ течет полный ток нагрузки (и ток КЗ до момента закрывания транзистора). Поэтому ключевой элемент надо устанавливать на радиатор соответствующих размеров.
На полевом транзисторе
Этот недостаток можно несколько сгладить применением в качестве ключа полевого транзистора. Его сопротивление в открытом состоянии заметно ниже, значит, и рассеиваемая на нем мощность также меньше. Да и ток нагрузки ограничивается в меньшей степени.
Здесь ключ находится в отрицательной шине выходного напряжения. В исходном положении полевой транзистор открыт напряжением, поступающим через светодиод. Ток в этой цепи очень мал, светодиод не светится. Транзистор Т2 закрыт. При увеличении тока потребления напряжение на шунте R1 начинает расти, когда оно увеличится до уровня открывания Т2, ключ T1 закроется, а ток через светодиод увеличится, индицируя об активации защиты. Уровень срабатывания регулируется выбором сопротивления шунта.
Ток защиты можно настраивать и изменением сопротивления R4. Если вместо него установить потенциометр, можно сделать регулируемую защиту по току. Использовать в качестве R1 переменный или подстроечный элемент нельзя.
Транзистор T2 любой маломощный. Т1 должен быть рассчитан на полный ток нагрузки. Можно применить транзисторы из таблицы или другие подходящие по току и напряжению.
Тип транзистора | Максимальный ток стока, А |
---|---|
IRFZ40 | 50 |
IRFZ44 | 41-55 (в зависимости от исполнения) |
IRFZ46 | 46-55 (в зависимости от исполнения) |
IRFZ48 | 61-72 (в зависимости от исполнения) |
Если рабочий ток превышает 8..10 ампер, ключ надо установить на радиатор.
На тиристоре
Если нет мощного транзистора, защиту можно собрать и на тиристоре. Особенности данной схемы:
- используется второй признак короткого замыкания – снижение напряжения;
- защита работает в цепи выпрямленного (пульсирующего) напряжения (без сглаживающих конденсаторов).
Вторая особенность обусловлена тем, что тиристор выключается во время очередного снижения напряжения до нуля в конце полупериода. При постоянном напряжении он не закроется, пока не будет отключена нагрузка (или не выключится блок питания). Поэтому сфера применения этой схемы ограничена трансформаторными зарядными устройствами (аккумуляторам сглаживание напряжения не нужно).
Во время работы схемы, в начале каждого полупериода напряжение на делителе P1R4 возрастает, транзистор Т1 открывается, подавая напряжение на управляющий электрод тиристора. VS1 тоже открывается, пропуская полуволну синусоиды в нагрузку. Когда напряжение спадает, транзистор закрывается. Закрывается и тиристор, ведь в момент перехода через ноль ток через него падает до уровня, меньшего тока удержания. В новом полупериоде все повторяется снова. Если в результате КЗ напряжение на выходе снизится, транзистор не сможет открыться, не откроется и тиристор. Когда ток упадет номинального уровня, напряжение на выходе восстановится, и тиристор вновь откроется. Ток (точнее, напряжение) срабатывания устанавливается потенциометром Р1.
К недостаткам схемы можно отнести низкое быстродействие – если замыкание произойдет в начале полупериода, до отключения придется ждать его окончания – это 0,01 секунды (плюс время срабатывания тиристора), что достаточно много. Другая проблема – если замыкание произойдет в электрически удаленной точке и мощность источника будет высокой, необходимого снижения напряжения может и не произойти. Кроме того, снижение напряжения может произойти и не по причине сверхтока, и произойдет ложное срабатывание.
На реле
Несложную защиту моно выполнить на одном электромагнитном реле. Ее особенность в том, что реле является измерительным органом, пороговой схемой и ключевым элементом одновременно.
В исходном положении контакты реле находятся в положении, указанном на схеме. Положительная шина разомкнута, напряжения на выходе нет. При нажатии на кнопку S1 реле срабатывает, перекидной контакт переключается и обмотка реле самоблокируется во включенном положении. Загорится зеленый светодиод.
При возникновении короткого замыкания или перегрузки, достаточной для просадки выходного напряжения, напряжение снизится до уровня ниже напряжения удержания реле (оно всегда ниже напряжения срабатывания), реле отпустит, напряжение на потребителе исчезнет, зеленый светодиод погаснет, а красный загорится. Схема вернется в исходное положение, а для подачи напряжения на выход потребуется вновь нажать кнопку.
Кроме недостатков, характерных для всех схем, отслеживающих падение напряжение в результате сверхтока, данное решение имеет свои минусы. Ток срабатывания невозможно настроить — только подбором реле. Для выбора надо иметь запас элементов. Второе – точность настройки уровня отключения будет низкой. Ток срабатывания зависит от состояния механической части реле – упругости пружины, трения в поворотном механизме якоря и т.п. А оно может меняться при воздействии окружающей среды или просто со временем. Также следует учитывать механический износ и подгорание контактов реле при многократных срабатываниях.
Для наглядности рекомендуем серию тематических видеороликов.
Приведенные схемы не являются исчерпывающими. В литературе и интернете можно найти и другие узлы, но рассмотренные принципы построения являются базовыми, и понимание их работы позволит разобраться и в работе других, более сложных схем.
Защита по току на полевом транзисторе
Надёжная токовая защита для БП и ЗУ на IR2153 и электронном трансформаторе.
На создание данной статьи меня спровоцировал опыт создания блоков питания и зарядных устройств на основе простых импульсных блоков питания, которыми являются как иип на IR2153, так и переделанный различными способами под блок питания электронный трансформатор. Данные источники питания являются простыми, нестабилизированными импульсными блоками питания без каких-либо защит. Не смотря на данные недостатки, такие источники питания довольно просты в изготовлении,не требуют сложной настройки, времени на создание такого блока питания требуется меньше чем на полный ШИМ БП с узлами стабилизации и защиты.
Обьединив такой блок питания и простейший ШИМ- регулятор на NE555, получам регулируемый блок питания как для экспирементов, так и для зарядки АКБ. Радости нашей нет предела до того момента, пока данный девайс не попробовать на искру, или по ошибке, размышляя над созданием очередного аппарата перепутать полярность заряжаемого АКБ. Окрикивая громким хлопком и орошая едким дымом помещение,в котором произошол данный конфуз, изобретение сообщает нам, что простой импульсный блок питания, который собран по упрощённо-ознакомительной схеме не может быть надёжным.
Тут пришла мысль о том, чтобы найти не просто ввести тот или инной узел защиты в конкретный экземпляр блока питания, а найти или создать универсальную быстродействующую схему, которую можно внедрять в любой вторичный источник питания.
Требования к узлу защиты:
- плата защиты должна занимать мало места
- работоспособной при больших токах нагрузки
- высокая скорость срабатывания
Одним из заинтересовавших вариантов была такая схема, найденная в интерете:
При замыкании выхода данной схемы, разряжается ёмкость затвора VT1 через диод VD1, что приводит к закрытию VT1 и ток через транзистор не протекает, блок питания остаётся целым и невредимым. Но что же произойдёт если на выход данной схемы подключить нагрузку, в 300вт, когда наш иип может выдать всего 200вт? Не смотря на то что у нас присутствует схема защиты, замученный блок питания снова взрывается.
Недостатки данной схемы:
1. Необходимо точно подбирать сопротивление шунта, чтобы максимально допустимый ток блока питания создал такое падение напряжения на выбранном шунте, при котором VT2, открываясь полностью закроет VT1.
2. В данной схеме может наступить момент, когда ток проходящий через шунт, приоткроет VT2, вследствии чего VT1 начнёт закрываться и останется в таком состоянии, что будет недозакрыт, а учитывая что через VT1 протекает немалый ток, то данный линейный режим вызовет его сильный перегрев, врезультате которого VT1 будет пробит.
В блоке питания на IR2153 однажды применял триггерную защиту, остался доволен её работой. Прицепим к схеме триггерной защёлки на комплиментарной паре транзисторов шунт в качестве датчика тока и n-канальный транзистор в роли ключевого элемента получаем такую схему:
После подачи питания на схему, транзистор Q3, через светодиод и R4 открывается, стабилитрон D3 ограничивает напряжение на затворе полевого транзистора. D4 защищает Q3 от выбросов высокого напряжения, при подключении индуктивной нагрузки (электродвигатель). На паре транзисторов Q1, Q2 собран аналог тиристора. Ток, протекающий через шунт R1, вызывает падение напряжения, которое с движка переменного резистора R10, и цепочку R2, С2, поступает на базу транзистора Q2. Величину напряжения с шунта, которое пропорционально току, протекающему через этот шунт можно регулировать прерменным резистором R10. В момент, когда напряжение на базе Q2 станет больше 0.5-0.7в транзистор Q2 начнёт открываться, тем самым открывая Q1, в свою очередь транзистор Q1открываясь, будет открывать Q2. Данный процесс происходит очень быстро, за доли секунды транзисторы откроют друг друга и останутся в таком устойчивом состоянии. Через открытый аналог тиристора затвро Q3, а также резистор R4 окажутся подключены к общему проводнику схемы, что приведёт к закрытию Q3 и свечение светодиода D1 сообщит о том что сработала защита. Снять защиту можно как отключив кратковременно питание, так и кратковременным нажатием на кнопку S1.
Универсальная схема защиты была создана и проверена в работе, шунт R1 был составлен из двух резисторов 0.22 Ом 5Вт. Остался последний шаг — вводим в нвшу схему защиту от переполюсовки клемм АКБ.
Схема с защитой от переполюсовки :
Наша схема дополнилась диодом D2, резисторами R6, R5. Кнопка S1 была убрана из схемы по причине того, что при срабатывании защиты она не выводила схему из защиты, после доработки.
Токовая защита осталась без изменений, снять защиту можно отключив питание на 2-3 секунды. При подключении к выходу схемы АКБ, перепутав полярность, напряжение с АКБ через диод D2, резистор R6 поступает на базу Q2, срабатывает защита Q3 закрывается, светодиод D1 сигнализирует о срабатывании защиты.
Защита от КЗ на полевом транзисторе
Современные мощные переключательные транзисторы имеют очень маленькие сопротивления сток-исток в открытом состоянии, это обеспечивает малое падение напряжения при прохождении через эту структуру больших токов. Это обстоятельство позволяет использовать такие транзисторы в электронных предохранителях.
Например, транзистор IRL2505 имеет сопротивление сток-исток, при напряжении исток-затвор 10В, всего 0,008 Ом. При токе 10А на кристалле такого транзистора будет выделяться мощность P=I² •R; P = 10 • 10 • 0,008 = 0,8Вт. Это говорит о том, что при данном токе транзистор можно устанавливать без применения радиатора. Хотя я всегда стараюсь ставить хотя бы небольшие теплоотводы. Это во многих случаях позволяет защитить транзистор от теплового пробоя при внештатных ситуациях. Этот транзистор применен в схеме защиты описанной в статье «Защита для зарядных устройств автоаккумуляторов». При необходимости можно применить радиоэлементы для поверхностного монтажа и сделать устройство виде небольшого модуля. Схема устройства представлена на рисунке 1. Она рассчитывалась на ток до 4А.
Схема электронного предохранителя
В данной схеме в качестве ключа использован полевой транзистор с р каналом IRF4905, имеющий сопротивление в открытом состоянии 0,02 Ом, при напряжении на затворе = 10В.
В принципе этой величиной ограничивается и минимальное напряжение питания данной схемы. При токе стока, равном 10А, на нем будет выделяться мощность 2 Вт, что повлечет за собой необходимость установки небольшого теплоотвода. Максимальное напряжение затвор-исток у этого транзистора равно 20В, поэтому для предотвращения пробоя структуры затвор-исток, в схему введен стабилитрон VD1, в качестве которого можно применить любой стабилитрон с напряжение стабилизации 12 вольт. Если напряжение на входе схемы будет менее 20В, то стабилитрон из схемы можно удалить. В случае установки стабилитрона, возможно, потребуется коррекция величины резистора R8. R8 = (Uпит — Uст)/Iст; Где Uпит – напряжение на входе схемы, Uст – напряжение стабилизации стабилитрона, Iст – ток стабилитрона. Например, Uпит = 35В, Uст = 12В, Iст = 0,005А. R8 = (35-12)/0,005 = 4600 Ом.
Преобразователь ток — напряжения
В качестве датчика тока в схеме применен резистор R2, чтобы уменьшить мощность, выделяющуюся на этом резисторе, его номинал выбран всего в одну сотую Ома. При использовании SMD элементов его можно составить из 10 резисторов по 0,1 Ом типоразмера 1206, имеющих мощность 0,25Вт. Применение датчика тока с таким малым сопротивление повлекло за собой применение усилителя сигнала с этого датчика. В качестве усилителя применен ОУ DA1.1 микросхемы LM358N.
Коэффициент усиления этого усилителя равен (R3 + R4)/R1 = 100. Таким образом, с датчиком тока, имеющим сопротивление 0,01 Ом, коэффициент преобразования данного преобразователя ток – напряжения равен единице, т.е. одному амперу тока нагрузки равно напряжение величиной 1В на выходе 7 DA1.1. Корректировать Кус можно резистором R3. При указанных номиналах резисторов R5 и R6, максимальный ток защиты можно установить в пределах… . Сейчас посчитаем. R5 + R6 = 1 + 10 = 11кОм. Найдем ток, протекающий через этот делитель: I = U/R = 5А/11000Ом = 0,00045А. Отсюда, максимальное напряжение, которое можно выставить на выводе 2 DA1, будет равно U = I x R = 0,00045А x 10000Ом = 4,5 B. Таким образом, максимальный ток защиты будет равен примерно 4,5А.
Компаратор напряжения
На втором ОУ, входящем в состав данной МС, собран компаратор напряжения. На инвертирующий вход этого компаратора подано регулируемое резистором R6 опорное напряжение со стабилизатора DA2. На неинвертирующий вход 3 DA1.2 подается усиленное напряжение с датчика тока. Нагрузкой компаратора служит последовательная цепь, светодиод оптрона и гасящий регулировочный резистор R7. Резистором R7 выставляют ток, проходящий через эту цепь, порядка 15 мА.
Работа схемы
Работает схема следующим образом. Например, при токе нагрузки в 3А, на датчике тока выделится напряжение 0,01 х 3 = 0,03В. На выходе усилителя DA1.1 будет напряжение, равное 0,03В х 100 = 3В. Если в данном случае на входе 2 DA1.2 присутствует опорное напряжение выставленное резистором R6, меньше трех вольт, то на выходе компаратора 1 появится напряжение близкое к напряжению питания ОУ, т.е. пять вольт. В результате засветятся светодиод оптрона. Откроется тиристор оптрона и зашунтирует затвор полевого транзистора с его истоком. Транзистор закроется и отключит нагрузку. Вернуть схему в исходное состояние можно кнопкой SB1 или выключением и повторным включением БП.
Недостатком схемы является однополярное питание операционного усилителя, в связи с этим при малых значениях падения напряжения на датчике тока, возникает большая нелинейность коэффициента усиления ОУ DA1.1.
Защита затвора полевого транзистора
Не будет преувеличением назвать изолированный затвор полевого транзистора довольно чувствительной его частью, которая нуждается в индивидуальной защите. Пробой затвора — явление довольно нехитрое. Оно может произойти по нескольким причинам: электростатическая наводка, паразитные колебания в цепях управления, и конечно эффект Миллера, когда возникающее на коллекторе перенапряжение через емкостную связь оказывает вредоносное действие на затвор.
Так или иначе, данные причины можно предотвратить, надежно обеспечив соблюдение правил эксплуатации транзистора: не превышать предельно допустимое напряжение затвор-исток, обеспечить надежное и своевременное запирание во избежание сквозных токов, сделать соединительные проводники цепей управления как можно более короткими (для достижения наименьшей паразитной индуктивности), а также максимально защитить сами цепи управления от помех. В таких условиях ни одна из перечисленных причин просто не сможет проявить себя и нанести вред ключу.
Итак, что касается непосредственно затвора, то для его защиты полезно применять специальные цепи, особенно если соединение драйвера с затвором и истоком невозможно выполнить вплотную в силу конструктивных особенностей разрабатываемого устройства. В любом случае, когда речь заходит о защите затвора, выбор падает на одну из четырех основных схем, каждая из которых идеально подходит для тех или иных условий, о которых будет сказано ниже.
Одиночный резистор
Элементарную защиту затвора от статического электричества способен обеспечить одиночный резистор номиналом в 200 кОм, будучи установлен вплотную между стоком и истоком транзистора. В некоторой мере такой резистор способен помешать и перезаряду затвора, если по какой-то причине негативную роль сыграет импеданс цепей драйвера.
Решение с одиночным резистором как нельзя идеально подойдет для защиты транзистора в низкочастотном устройстве, где он непосредственно коммутирует чисто активную нагрузку, то есть где в цепь коллектора включена не индуктивность дросселя или обмотки трансформатора, а нагрузка типа лампы накаливания или светодиода, когда об эффекте Миллера не может быть и речи.
Стабилитрон с диодом Шоттки или супрессор (TVS)
Классика жанра для защиты затворов транзисторов в сетевых импульсных преобразователях — стабилитрон в паре с диодом Шоттки или супрессор. Данная мера позволит защитить цепь затвор-исток от разрушительного влияния эффекта Миллера.
В зависимости от режима работы ключа, выбирается стабилитрон на 13 вольт (при напряжении драйвера 12 вольт) или супрессор с аналогичным типовым рабочим напряжением. При желании можно добавь сюда и резистор на 200 кОм.
Назначение супрессора — быстро поглотить импульсную помеху. Поэтому, если сразу известно, что режим работы ключа будет жестким, соответственно и условия защиты потребуют от ограничителя рассеивать высокие импульсные мощности и очень быстрой реакции — в этом случае лучше выбрать супрессор. Для режимов же более мягких — подойдет стабилитрон с диодом Шоттки.
Диод Шоттки на цепь питания драйвера
Когда низковольтный драйвер установлен на плате вплотную к управляемому транзистору, можно использовать для защиты одиночный диод Шоттки, подключенный между затвором транзистора и цепью низковольтного питания драйвера. И даже если по какой-то причине напряжение на затворе и окажется превышено (станет выше, чем напряжение питания драйвера плюс падение напряжения на диоде Шоттки), лишний заряд просто уйдет в цепь питания драйвера.
Профессиональные разработчики силовой электроники рекомендуют использовать данное решение только в том случае, если расстояние от ключа до драйвера не превышает 5 см. Не помешает здесь и защитный резистор от статики, о котором было сказано выше.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети:
Как сделать защиту от переполюсовки, от КЗ для блока питания своими руками
Содержание
- 1 Вариант 1
- 2 Вариант 2
- 3 Вариант 3
- 4 Итог
Многие самодельные блоки имеют такой недостаток, как отсутствие защиты от переполюсовки питания. Даже опытный человек может по невнимательности перепутать полярность питания. И есть большая вероятность что после этого зарядное устройство придет в негодность.
В этой статье будет рассмотрено 3 варианта защит от переполюсовки, которые работают безотказно и не требуют никакой наладки.
Вариант 1
Это защита наиболее простая и отличается от аналогичных тем, что в ней не используются никакие транзисторы или микросхемы. Реле, диодная развязка – вот и все ее компоненты.
Работает схема следующим образом. Минус в схеме общий, поэтому будет рассмотрена плюсовая цепь.
Если на вход не подключен аккумулятор, то реле находится в разомкнутом состоянии. При подключении аккумулятора плюс поступает через диод VD2 на обмотку реле, вследствие чего контакт реле замыкается, и основной ток заряда протекает на аккумулятор.
Одновременно загорается зеленый светодиодный индикатор, свидетельствуя о том, что подключение правильное.
И если теперь убрать аккумулятор, то на выходе схемы будет напряжение, поскольку ток от зарядного устройства будет продолжать поступать через диод VD2 на обмотку реле.
Если перепутать полярность подключения, то диод VD2 окажется заперт и на обмотку реле не поступит питание. Реле не сработает.
В этом случае загорится красный светодиод, который нарочно подключен неправильным образом. Он будет свидетельствовать о том, что нарушена полярность подключения аккумулятора.
Диод VD1 защищает цепь от самоиндукции, которая возникает при отключении реле.
В случае внедрения такой защиты в зарядное устройство автомобильного аккумулятора, стоит взять реле на 12 В. Допустимый ток реле зависит только от мощности зарядника. В среднем стоит использовать реле на 15-20 А.
Вариант 2
Эта схема до сих пор не имеет аналогов по многим параметрам. Она одновременно защищает и от переполюсовки питания, и от короткого замыкания.
Принцип работы этой схемы следующий. При нормальном режиме работы плюс от источника питания через светодиод и резистор R9 открывает полевой транзистор, и минус через открытый переход «полевика» поступает на выход схемы к аккумулятору.
При переполюсовке или коротком замыкании ток в цепи резко возрастает, вследствие чего образуется падение напряжения на «полевике» и на шунте. Такое падение напряжение достаточно для срабатывания маломощного транзистора VT2. Открываясь, последний запирает полевой транзистор, замыкая затвор с массой. Одновременно загорается светодиод, поскольку питание для него обеспечивается открытым переходом транзистора VT2.
Из-за высокой скорости реагирования эта схема гарантированно защитит зарядное устройство при любой проблеме на выходе.
Схема очень надежна в работе и способна оставаться в состоянии защиты бесконечно долгое время.
Вариант 3
Это особо простая схема, которую даже схемой трудно назвать, поскольку в ней использовано всего 2 компонента. Это мощный диод и предохранитель. Этот вариант вполне жизнеспособен и даже применяется в промышленных масштабах.
Питание с зарядного устройства через предохранитель поступает на аккумулятор. Предохранитель подбирается исходя из максимального тока зарядки. Например, если ток 10 А, то предохранитель нужен на 12-15 А.
Диод подключен параллельно и закрыт при нормальной работе. Но если перепутать полярность, диод откроется и случится короткое замыкание.
А предохранитель – это слабое звено в этой схеме, который сгорит в тот же миг. Его после этого придется менять.
Диод следует подбирать по даташиту исходя из того, что его максимальный кратковременный ток был в несколько раз больше тока сгорания предохранителя.
Такая схема не обеспечивает стопроцентную защиту, поскольку бывали случаи, когда зарядное устройство сгорало быстрее предохранителя.
С точки зрения КПД, первая схема лучше других. Но с точки зрения универсальности и скорости реагирования, лучший вариант – это схема 2. Ну а третий вариант часто применяется в промышленных масштабах. Такой вариант защиты можно увидеть, к примеру, на любой автомагнитоле.
Все схемы, кроме последней, имеют функцию самовосстановления, то есть работа восстановится, как только будет убрано короткое замыкание или изменится полярность подключения аккумулятора.
Максимальная токовая защита (МТЗ) — вид релейной защиты, действие которой связано с увеличением силы тока в защищаемой цепи при возникновении короткого замыкания на участке данной цепи. Данный вид защиты применяется практически повсеместно и является наиболее распространённым в электрических сетях.
Максимально-токовые защиты по виду время-токовой характеристики подразделяются:
- МТЗ с независимой от тока выдержкой временем
- МТЗ с зависимой от тока выдержкой времени
- МТЗ с ограниченно-зависимой от тока выдержкой времени
Применяются также комбинированный вид защиты МТЗ — максимально-токовая защита с пуском (блокировкой) от реле минимального напряжения.
Принцип действия МТЗ аналогичен принципу действия токовой отсечки. В случае повышения силы тока в защищаемой сети защита начинает свою работу. Однако, если токовая отсечка действует мгновенно, то максимальная токовая защита даёт сигнал на отключение только по истечении определённого промежутка времени, называемого выдержкой времени. Выдержка времени зависит от того, где располагается защищаемый участок. Наименьшая выдержка времени устанавливается на наиболее удалённом от источника участке. МТЗ соседнего (более близкого к источнику энергии) участка действует с большей выдержкой времени, отличающейся на величину, называемую ступенью селективности. Ступень селективности определяется временем действия защиты. В случае короткого замыкания на участке срабатывает его защита. Если по каким-то причинам защита не сработала, то через определённое время (равное ступени селективности) после начала короткого замыкания сработает МТЗ более близкого к источнику участка и отключит как повреждённый,так и свой участок. По этой причине важно, чтобы ступень селективности была больше времени срабатывания защиты, иначе защита смежного участка отключит как повреждённый, так и рабочий участок до того, как собственная защита повреждённого участка успеет сработать. Однако важно так же сделать ступень селективности достаточно небольшой, чтобы защита успела сработать до того, как ток короткого замыкания нанесёт серьёзный ущерб электрической сети.
Уставку (или величину тока, при которой срабатывает защита) выбирают, исходя из наименьшего значения тока короткого замыкания в защищаемой сети (при разных повреждениях токи короткого замыкания отличаются). Однако при выборе уставки следует так же учитывать характер работы защищаемой сети. Например, при самозапуске электродвигателей после перерыва питания, значение силы тока в сети может быть выше номинального, и защита не должна его отключать.
- Провод СИП-3 1х70: надежность и эффективность для электросетей
- Услуги электротехнической лаборатории: безопасность и проверка электрооборудования
- Потолочные профили: как выбрать и установить для подвесных потолков
- Обзор бесшовных труб: виды, подвиды и области применения
- Противопожарные ворота: Надежная защита для вашего объекта