Автотрансформатор своими руками
Автотрансформатор своими руками
Схемы и пошаговая инструкция, как сделать автотрансформатор своими руками
Кроме обычных трансформаторов, в которых несколько обмоток, есть автотрансформаторы, в которых всего одна катушка. При необходимости можно произвести сборку автотрансформатора своими руками.
- Принцип действия
- Основные плюсы и минусы
- Мощность автотрансформатора
- Что такое ЛАТР
- Область применения
- Металлургическое производство
- Коммунальное хозяйство
- Химическая и нефтяная промышленность
- Производство техники
- Учебные заведения
- Изготовление самодельного ЛАТРа
- Подготовка материала
- Расчет провода
- Схема
- Намотка катушки
- Процесс сборки
- Проверка
- Как сделать трансформатор из автотрансформатора
- Электронный автотрансформатор
- Тиристорный регулятор
- Транзисторное управление
- ШИМ-регулятор
Принцип действия
Основной принцип действия автотрансформатора аналогичен обычному аппарату:
- ток, протекающий по первичной обмотке, создает магнитное поле и магнитный поток в магнитопроводе;
- величина этого поля зависит от силы тока и от числа витков;
- изменения магнитного потока наводят ЭДС во вторичной обмотке;
- величина наведенной ЭДС зависит от числа витков во вторичной обмотке.
Особенность автотрансформатора в том, что часть витков первичной обмотки является также вторичной. В связи с тем, что ЭДС в первичной и вторичной обмотках направлены встречно, ток в общей части катушки I¹² равен разнице I¹ и I². При равенстве входного и выходного напряжения или Ктр=1 I¹² определяется индуктивным сопротивлением катушки.
Основные плюсы и минусы
В связи с особенностями конструкции автотрансформатор обладает преимуществами и недостатками по сравнению с обычными устройствами.
Достоинства автотрансформатора, проявляющиеся при Ктр0,5-2:
- меньший вес и габариты;
- более высокий КПД, связанный с пониженными потерями в обмотках и магнитопроводе.
Кроме достоинств, эти устройства имеют недостатки:
- Повышенный ток КЗ. Это связано с тем, что ток нагрузки ограничен не насыщением магнитопровода, а сопротивлением нескольких витков вторичной обмотки.
- Электрическая связь между первичной и вторичной обмотками. Это делает невозможным применение этих аппаратов в качестве разделительных и для питания низковольтных устройств в опасных условиях, требующих низкого напряжения согласно ПУЭ.
Мощность автотрансформатора
Мощность любого электроаппарата равна произведению тока на напряжение Р=I*A. В обычном трансформаторе она равна мощности нагрузки с учетом КПД.
Мощность автотрансформатора рассчитывается немного иначе. В повышающем напряжение аппарате она складывается из мощности первичной обмотки части Р¹²=I¹²*U¹² и мощности повышающей обмотки Р²=I²*U⅔. В связи с тем, что ток, протекающий через первичную катушку меньше, чем ток нагрузки, то мощность автотрансформатора меньше мощности нагрузки. Фактически, мощность аппарата определяется разностью первичного и вторичного напряжений и током вторичной обмотки P=(U¹-U²)*I².
Особенно это заметно при небольших (10-20%) отклонениях выходного напряжения. Аналогичным образом рассчитывается понижающий автотрансформатор.
Информация! Это позволяет уменьшить сечение магнитопровода и диаметр провода обмотки. В связи с этим автотрансформатор легче и дешевле обычного устройства.
Что такое ЛАТР
Кроме силовых аппаратов, заменяющих обычные трансформаторы, в школах, институтах и лабораториях используются ЛАТРы – Лабораторные АвтоТРанформаторы. Эти устройства используются для плавного изменения напряжения на выходе аппарата. Самые распространенные конструкции представляют из себя катушку, намотанную на тороидальном магнитопроводе. С одной из сторон провод очищен от лака и по нему при помощи поворотного механизма двигается графитный ролик.
Питающее напряжение подаётся на концы катушки, а вторичное снимается с одного из концов и графитного ролика. Поэтому ЛАТР не может поднимать напряжение выше сетевого, в некоторых модификациях выше 250В.
Кроме катушечных, есть электронные ЛАТРы. Фактически, это не автотрансформатор, а регулятор напряжения. Есть разные виды таких устройств:
- Тиристорный регулятор. В этих аппаратах в качестве силового элемента установлены тиристор и диодный мост или симистор. Недостаток в отсутствии синусоидальной формы выходного напряжения. Самый известный прибор такого типа – диммер ламп освещения.
- Транзисторный регулятор. Дороже тиристорного, требует установки транзисторов на радиаторы. Обеспечивает синусоидальную форму выходного напряжения.
- ШИМ-контроллер.
Совет! Для того, чтобы получить напряжение выше сетевого, ЛАТР подключается ко вторичной обмотке повышающего трансформатора.
Область применения
Особенности автотрансформатора позволяют применять его в быту и разных областях промышленности.
Металлургическое производство
Регулируемые автотрансформаторы в металлургии применяются для проверки и настройки защитной аппаратуры прокатных станов и трансформаторных подстанций.
Коммунальное хозяйство
До появления автоматических стабилизаторов эти аппараты применялись для обеспечения нормальной работы телевизоров и другой аппаратуры. Они представляли из себя обмотку с большим числом отводов и переключателем. Он переключал вывода катушки, а выходное напряжение контролировалось при помощи вольтметра.
В настоящее время автотрансформаторы используются в релейных стабилизаторах напряжения.
Справка! В трехфазных стабилизаторах установлены три однофазных автотрансформатора, и регулировка производится в каждой фазе по-отдельности.
Химическая и нефтяная промышленность
В химической и нефтяной промышленности эти аппараты применяются для стабилизации и регулировки химических реакций.
Производство техники
В машиностроении такие аппараты используются для пуска электродвигателей станков и управления скоростью вращения дополнительных приводов.
Учебные заведения
В школах, техникумах и институтах ЛАТРы применяются при выполнении лабораторных работ и демонстрации законов электротехники, и опытах по электролизу.
Изготовление самодельного ЛАТРа
В продаже есть достаточно готовых устройств, но при необходимости его можно сделать самостоятельно. За основу лучше взять трансформатор на О- или Ш-образном магнитопроводе. Изготовление ЛАТРа на тороидальном железе сводится к его перемотке и требует очень высокой аккуратности при наматывании катушки.
Подготовка материала
Для изготовления регулируемого автотрансформатора необходимы:
- Магнитопровод. Его сечение определяет мощность автотрансформатора.
- Обмоточный провод. Его сечение зависит от мощности и потребляемого тока устройства.
- Термоустойчивый лак. Необходим для пропитки катушки после намотки проводов. Допускается замена масляной краской.
- Тряпичная изолента или киперная лента и корпус с закрепленными разъемами для подключения нагрузки и питания. Желательно разместить в корпусе цифровой или аналоговый вольтметр
- Многопозиционный переключатель. Его допустимый ток должен соответствовать току аппарата. При необходимости допускается производить переключение выводов автотрансформатора при помощи пускателей.
Расчет провода
Перед началом намотки катушки необходимо определить сечение провода и необходимое количество витков/вольт (n/v). Этот расчёт производится по поперечному сечению магнитопровода при помощи онлайн-калькуляторов или по специальным таблицам.
Если для изготовления устройства используется исправный трансформатор, то эти параметры определяются по имеющимся обмоткам:
- подключить трансформатор к сети 220В;
- вольтметром измерить выходное напряжение V;
- отключить аппарат;
- разобрать магнитопровод;
- размотать вторичную обмотку, считая количество витков N;
- по формуле n/v=N/V вычислить количество витков/вольт – основной параметр для расчета катушки;
- измерить сечение провода первичной обмотки.
Совет! Если первичная обмотка не была пропитана лаком и разматывается без нарушения изоляции, то допускается использовать её для намотки катушки автотрансформатора.
Схема
Перед началом работ составляется схема обмотки с указанием количества витков и напряжением на каждом из выводов. В отличие от обычного трансформатора автотрансформатор имеет только одну обмотку, которая изображается с одной из сторон черты, символизирующей магнитопровод.
Для расчетов витков необходимо определить число выводов. Оно зависит от количества положений многопозиционного переключателя. Один из отводов может совпадать с сетевым выводом:
- определить и указать на схеме напряжение V каждого из положений переключателя;
- рассчитать необходимое число витков между отводами по формуле N=(n/v)*(V²-V³), где V¹, V², V³ и т.д. – напряжение на последующих выводах;
- указать на схеме количество витком между каждыми из отводов.
Совет! При необходимости сделать повышающий автотрансформатор к первичной обмотке добавляется необходимое количество витков. Для этого допускается использовать провод, снятый со вторичной обмотки.
Намотка катушки
После выполнения всех расчётов производится намотка катушки. Она выполняется на готовом или специально изготовленном каркасе вручную или при помощи намоточного станка:
- наматывается необходимое число витков в секции;
- выполняется ответвление – из обмоточного провода, не обрывая его, делается петля длиной 5-20 см и скручивается в жгут;
- после изготовления отвода продолжается намотка катушки;
- операции 1-3 повторяются до завершения намотки;
- готовая обмотка закрепляется киперной лентой и покрывается лаком или краской.
Процесс сборки
После завершения намотки и высыхания лака производится сборка автотрансформатора:
- собирается магнитопровод;
- собранный аппарат устанавливается в корпус;
- подключаются многопозиционный переключатель и вольтметр;
- собранный автотрансформатор подключается к клеммам.
Проверка
После сборки работоспособность устройства необходимо проверить:
- первичная обмотка аппарата подключается к сети;
- измеряются напряжения при каждом из положений переключателя и данные сравниваются с расчетными;
- через 20 минут трансформатор отключается и проверяется на нагрев – при его отсутствии производятся повторные испытания под нагрузкой.
Как сделать трансформатор из автотрансформатора
Кроме изготовления ЛАТРа из обычного трансформатора возможно обратная операция – изготовление трансформатора из ЛАТРа. Такие устройства обладают более высоким КПД из-за лучших свойств тороидального сердечника по сравнению с Ш-образным магнитопроводом.
Для такой переделки достаточно намотать вторичную обмотку:
- посчитать количество витков между выводами 220В;
- определить число витков/вольт
Электронный автотрансформатор
Более современным способом регулировки является использование электронных устройств. Любое из них можно изготовить своими руками.
Тиристорный регулятор
Простейшая схема такого приспособления представляет собой переменный резистор, включенный между анодом и управляющим электродом тиристора. Это позволяет получать пульсирующее постоянное напряжение и управлять им в диапазоне 0-110В.
Для регулировки переменного напряжения 0-220В применяется встречно-параллельная схема соединения, а резистор включается между управляющими электродами.
Вместо двух тиристоров целесообразно применение симистора, а в качестве схемы управления использовать диммер для ламп накаливания.
Транзисторное управление
Самая качественная регулировка получается при использовании транзисторного регулятора. Он обеспечивает плавное изменение и правильную форму выходного напряжения.
Недостаток этой схемы в нагреве выходных транзисторов. Для его уменьшения и повышения КПД целесообразно подключить регулятор к выходным клеммам автотрансформатора – грубая регулировка осуществляется переключением обмоток, а плавная при помощи транзисторов.
ШИМ-регулятор
Самым современным способом является применение ШИМ-контроллера (широтно-импульсная модуляция). В качестве силовых элементов полевые или биполярные транзисторы с изолированным затвором (IGBT).
Как сделать лабораторный ЛАТР своими руками?
Трансформатор имеющий электрическую связь между обмотками называют лабораторным автотрансформатором, или ЛАТРом. Вольтаж цепи нагрузки прямо пропорционален обмотке вторичной цепи. В зависимости от конструкции, получение нужного выходного напряжения производиться подключением к соответствующим выводам или вращением ручного регулятора (рис. 1). В этой статье описывается как сделать ЛАТР в домашних условиях.
- 1 Подготовка материала
- 2 Расчет провода
- 3 Процесс сборки
- 4 Проверка
Подготовка материала
Для сборки ЛАТРа понадобятся следующие материалы и устройства:
- Медная обмотка;
- Тороидальный или стержневой магнитопровод. Можно приобрести в специализированном магазине или извлечь из испорченной техники;
- Термоустойчивый лак;
- Тряпичная изолента;
- Корпус с закрепленными разъемами для подключения нагрузки и питания.
Для лабораторного ЛАТРа с переменным коэффициентом трансформации могут дополнительно понадобиться:
- Цифровой или аналоговый вольтметр.
- Поворотный механизм, включающий в себя ручку и ползунок с угольной щеткой. Он будет регулировать напряжение.
Расчет провода
Автотрансформатор нецелесообразно использовать для больших трансформаций по следующим причинам:
- Большой риск получить токи, близкие к короткому замыканию. Это компенсируется специальными электронными схемами или дополнительным сопротивлением. Для маленьких нагрузок выгоднее использовать электронный ЛАТР.
- Теряются преимущества перед трансформаторами: высокий КПД, экономия проводника и стали, малые габариты и вес, стоимость.
Определяемся в каких пределах будет работать ЛАТР. Питание сети выбираем 220 В. В качестве вторичных напряжений выбираем 127, 180 и 250 В. Мощность ограничиваем в 300 Вт. Можете выбрать свои значения и произвести аналогичные расчеты на примере этой статьи.
Обмотка рассчитывается по большему току. Наибольший ток будет при преобразовании напряжения 220 в 127 В. Автотрансформатор в этом случае является понижающим, и к нему подходит схема 1. Исходя из предоставленной схемы, рассчитываем максимальный ток I проходящий в обмотке обеих цепей:
I = I2 – I1 = P / U2 – P / U1 = 300 / 127 – 300 / 220 = 1 А
- где I, I2, I3 – токи в соответствующих участках цепи, А;
- P – мощность, Вт;
- U1, U2 – напряжения первичной и вторичной цепи, В.
Диаметр провода рассчитываем по формуле:
d = 0,8 * √I = 1 мм.
Из таблицы 1 выбираем тип провода и сечение. Выбор делаем с учетом расчетного тока и среднего значения плотности тока для трансформаторов – 2 А/мм².
Коэффициент трансформации ЛАТРа n вычисляем по формуле:
n = U1 / U2 = 220 / 127 = 1,73
Для дальнейшего расчета вычисляем расчетную мощность Pр:
Pр = P * k * (1 – 1/n) = 300 * 1,2 * (1 – 1/1,73) = 151,92 Вт
где к – коэффициент, учитывающий КПД автотрансформатора.
Для определения количества витков приходящихся на 1 вольт, необходимо посчитать площадь поперечного сечения сердечника S и определиться с типом магнитопровода:
S = √ Pр = √ 151,92 = 12,325 см²
W0 = m / S = 35 / 12,325 = 2,839
- где W0 – количество витков, приходящихся на 1 вольт;
- m – 50 для стержневого и 35 для тороидального магнитопроводов.
Если сталь не очень высокого качества стоит увеличить значение W0 на 20-30 %. Так же при расчете витков следует увеличить их количество на 5-10 %, чтобы избежать просадки напряжения. Рассчитываем количество витков для выбранных напряжений 127, 180, 220 и 250 В:
w = W0 * U
Получаем 360, 511, 624 и 710 витков.
Для расчета длины провода обматываем один виток на магнитопровод и измеряем его длину. Затем умножаем на максимальное количество витков и прибавляем по 25-30 сантиметров для каждого вывода к клемме.
Процесс сборки
Для сборки регулируемого ЛАТРа выбираем тороидальный магнитопровод (рис. 2). Место наложения обмотки изолируем тряпичной изолентой. Выводим провод для первой клеммы питания. Все последующие провода выводим не разрывая. Закрепляем первый виток на магнитопроводе и начинаем накручивать рассчитанное количество. При достижении витка соответствующего одному из выбранных напряжений, выводим петлю, и продолжаем наматывать провод. На рисунке 3 изображен процесс намотки на деревянном каркасе.
После наложения обмотки лакируем ЛАТР. Наполняем емкость выбранным лаком, и окунаем в него автотрансформатор. Оставляем на длительную просушку.
После просушки помещаем автотрансформатор в корпус. Первый выведенный провод присоединяем к разъему питания. Этот разъем должен быть электрически связан с общей клеммой нагрузки, поэтому соединяем их между собой каким-нибудь проводником. Петлю выведенную для 220 В, соединяем со второй клеммой питания. Остальные провода подключаем к соответствующим клеммам вторичной цепи. На “схеме” 2 изображены выводы проводов.
Для лабораторного автотрансформатора с переменным коэффициентом трансформации добавляем корпус, и делаем крепление для ручки регулятора. К ручке прикрепляем ползунок с угольной щеткой. Щетка должна плотно касаться верхней части обмотки. Помечаем область по которой будет передвигаться щетка, и в этом месте избавляемся от изоляции. Так щетка будет иметь прямой электрический контакт с вторичной обмоткой. Клеммы вторичных напряжений, кроме общей, заменяем одной, соединенной с угольной щеткой (схема 3). При подсоединяем закрепляем вольтметр.
Если следовать написанной статье, то ЛАТР можно с легкостью сделать своими руками.
Проверка
Что бы убедиться в бесперебойной и надежной работе устройства, выполняем следующие пункты:
- Подключаем автотрансформатор к сети 220 В;
- Проверяем на отсутствие задымления, запаха гари, сильных шумов;
- Вольтметром проверяем соответствие выходных значений;
- Через 10 — 20 минут работы отключаем ЛАТР. Проверяем не перегрелась ли обмотка.
- Снова включаем ЛАТР в сеть и подключаем нагрузку на длительное время.
При отсутствии проблем автотрансформатор готов к работе.
Как сделать электронный ЛАТР?
Основным поводом для создания электронного ЛАТРа своими руками является избыток на рынке электротоваров ненадежных регуляторов. Выходом из ситуации может быть образец промышленного типа, но такие экземпляры стоят дорого и обладают внушительными габаритами, что затрудняет его использование в домашних условиях.
Схема устройства электронного ЛАТРа.
Что представляет собой прибор
Стоит упомянуть, что лабораторные автотрансформаторы (ЛАТР) широко использовались еще полвека тому назад. Прежние варианты прибора обладали токосъемным контактом, который был расположен на вторичной обмотке. Это позволяло плавно изменять выходное напряжение (его значение).
Если подключались всевозможные лабораторные приборы, был вариант оперативной смены напряжения. Например, при необходимости легко можно было повлиять на степень нагрева паяльника, регулировать яркость освещения, обороты электродвигателя и многое другое. Вот такой своеобразный регулирующий блок питания.
Рисунок 1. Схема простого варианта ЛАТРа.
Нынешний вариант ЛАТРа обладает различными модификациями. В целом его можно считать трансформатором, в котором происходит трансформация переменного напряжения одной величины в переменное напряжение другой. Устройство широко используется в качестве стабилизатора напряжения. Основной особенностью является возможность изменения напряжения на выходе из прибора. ЛАТРы бывают нескольких вариантов исполнения:
- однофазного;
- трехфазного.
Трехфазный вариант представляет собой вмонтированные в едином корпусе три однофазных лабораторных автотрансформатора. Кстати, желающих стать обладателем трехфазного варианта значительно меньше.
Простой прибор для регулирования
Существует весьма простенький вариант ЛАТРа, который доступен даже для начинающих, его схема изображена на рис. 1. Регулируемый таким прибором диапазон напряжений находится в пределах 0-220 вольт. Данный самодельный регулятор обладает мощностью 25-500 Вт. Увеличение мощности устройства может быть проведено посредством установки тиристоров VD1 и VD2 на радиаторы.
Полупроводниковые приборы (речь идет о тиристорах ВД1 и ВД2) следует подключить параллельно с нагрузкой R1. Пропускаемый ими ток имеет противоположные направления. Когда прибор включается в сеть, тиристоры остаются закрытыми, в отличие от конденсаторов С1 и С2, зарядка которых производится резистором R5. Если есть потребность, с помощью резистора R5 можно изменить напряжение, которое получается во время нагрузки. Резистор и конденсаторы создают фазосдвигающую цепь.
Рисунок 2. ЛАТР с биполярным транзистором.
Фазосдвигающая цепь – это электрический четырехполюсник, гармонический сигнал на выходе которого сдвигается по фазе относительно входного сигнала. Распространены в САУ в качестве устройств корректировки, которые обеспечивают устойчивость и необходимое качество управления. Частными случаями являются дифференцирующие и интегрирующие цепи.
Данное техническое решение позволяет использовать для нагрузки не половинную мощность, а полную. Достигается это благодаря тому, что используются оба полупериода переменного тока.
К недостаткам можно отнести форму переменного напряжения на нагрузке. В этом варианте она не строго синусоидальная. Специфика работы полупроводниковых приборов является основной причиной. Наличие такой особенности способно вызвать помехи в сети. Но их можно устранить путем дополнительной установки дросселей (фильтров последовательной нагрузки) на схему. Такие фильтры можно найти даже в неисправном телевизоре.
Регулятор напряжения: вариант с трансформатором
Лабораторный автотрансформатор, который не станет причиной помех в сети и способный на выходе давать синусоидальное напряжение, устроен немного сложнее предыдущего.
Его схема (рис. 2) содержит биполярный транзистор VТ1. Он выступает в роли регулирующего элемента в таком устройстве. Мощность этого транзистора определяется в зависимости от необходимой нагрузки. В схеме он включен последовательно с нагрузкой и функционирует как реостат. Такой вариант предоставляет способность производить регулировку рабочего напряжения как во время активных, так и реактивных нагрузок.
К сожалению, и тут имеется свой недостаток. Он заключается в том, что задействованный регулирующий транзистор выделяет слишком большое количество тепла. Чтобы устранить его, понадобится теплоотводящий радиатор, который будет обладать достаточной мощностью. В данном случае площадь такого радиатора должна составлять как минимум 250 см².
В такой модели используется трансформатор Т1, который должен обладать мощностью от 12 и до 15 Вт и вторичным напряжением от 6 до 10 В. Выпрямление тока происходит с помощью диодного моста VD6. Выпрямленный ток к транзистору VТ1 в любом варианте полупериода проходит через мост диодов VD2 и VD5. Чтобы произвести регулировку базового тока транзистора VТ1, необходимо прибегнуть к помощи переменного резистора R1. Таким образом происходит изменение параметров тока нагрузки.
С помощью вольтметра РV1 осуществляется контроль величины напряжения на выходе из устройства. Вольтметр берется с расчетом на напряжение от 250 до 300 В. Если есть необходимость повышения мощности нагрузки, следует произвести замену транзистора VD1 и диодов VD2-VD5 более мощными. За этим, разумеется, последует увеличение площади радиатора.
Как можно заметить, самостоятельная сборка ЛАТРа возможна, необходимо лишь обладать знаниями в этой области и обзавестись нужными материалами.
ЛАТРа своими руками и способы сборки
На изготовление лабораторного автотрансформатора (ЛАТРа) своими руками многих толкает избыток на электрорынке некачественных регуляторов. Можно использовать и экземпляр промышленного типа, правда, подобные образцы имеют слишком большие размеры и дорого стоят. Именно из-за этого применение их в домашних условиях затруднено.
Что собой представляет электронный ЛАТР?
Автотрансформаторы нужны, чтобы плавно изменять напряжение тока частотой 50—60 Гц во время проведения разных электротехнических работ. Еще их нередко используют, когда требуется уменьшить либо увеличить переменное напряжение для бытового или строительного электрооборудования.
Трансформаторами выступает электрическая аппаратура, которая оснащена несколькими обмотками соединенными индуктивно. Применяется она для преобразования электрической энергии по уровню напряжения или тока.
Кстати, широко использовать электронный ЛАТР начали 50 лет тому назад. Раньше прибор оснащали токосъемным контактом. Его располагали на вторичной обмотке. Так получалось плавно настраивать выходное напряжение.
Когда подключались различные лабораторные устройства, присутствовал вариант оперативного изменения напряжения. Скажем, при желании можно было менять степень нагрева паяльника, настраивать обороты электромотора, яркость освещения и прочее.
В настоящее время ЛАТР имеет разные модификации. В целом он представляет собой трансформатор, преобразующий переменное напряжение одной величины в другую. Подобное устройство служит стабилизатором напряжения. Его главным отличием является возможность регулировки напряжения на выходе из оборудования.
Существуют разные виды автотрансформаторов:
- Однофазный;
- Трехфазный.
Последний тип — установленные в единой конструкции три однофазных ЛАТРа. Однако мало кто желает стать его владельцем. И трехфазные, и однофазные автотрансформаторы оборудованы вольтметром и регулировочной шкалой.
Область применения ЛАТРа
Автотрансформатор используют в различных сферах деятельности, среди них:
- Металлургическое производство;
- Коммунальное хозяйство;
- Химическая и нефтяная промышленности;
- Производство техники.
Кроме этого, он нужен для следующих работ: изготовления бытовых приборов, исследования электрооборудования в лабораториях, наладки и проверки техники, создания телевизионных приемников.
Вдобавок ЛАТР часто используют в учебных заведениях для проведения опытов на уроках химии и физики. Его можно даже обнаружить в составе устройств некоторых стабилизаторов напряжения. Также применяется в качестве дополнительного оборудования к самописцам и станкам. Почти во всех лабораторных исследованиях в виде трансформатора используют именно ЛАТР, поскольку он имеет простую конструкцию и несложен в эксплуатации.
Автотрансформатор в отличие от стабилизатора, который применяется лишь в нестабильных сетях и на выходе создает напряжение 220В с разной погрешностью в 2—5%, выдает точное заданное напряжение.
По климатическим параметрам разрешается использование этих приборов при высоте 2000 метров, но ток нагрузки приходится снижать на 2,5% при подъеме на каждые 500 м.
Основные минусы и плюсы автотрансформатора
Главное преимущество ЛАТРа — это более высокий КПД, ведь только некоторая часть мощности трансформируется. Особенно важно, если входное и выходное напряжения немного отличаются.
Их минусом является то, что отсутствует между обмотками электрическая изоляция. Хотя в промышленных электросетях нулевой провод обладает заземлением, поэтому такой фактор особой роли играть не будет, к тому же для обмоток используется меньше меди и стали для сердечников, как следствие, меньший вес и габариты. В результате можно хорошо сэкономить.
Первый вариант — прибор изменения напряжения
Если вы начинающий электрик, то лучше попробовать сначала сделать простую модель ЛАТРа, которая будет регулироваться устройством напряжения — от 0—220 вольт. По такой схеме автотрансформатор имеет мощность — от 25—500 Вт.
Чтобы увеличить мощность регулятора до 1,5 кВт, нужно тиристоры VD 1 и 2 поставить на радиаторы. Подключают их параллельно нагрузке R 1. Эти тиристоры ток пропускают в противоположных направлениях. При включении прибора в сеть они закрыты, а конденсаторы C 1 и 2 начинают заряжаться от резистора R 5. Еще им при необходимости изменяют величину напряжения во время нагрузки. Вдобавок этот переменный резистор вместе с конденсаторами образовывает фазосдвигающую цепь.
Такое техническое решение дает возможность пользоваться сразу двумя полупериодами переменного тока. В итоге для нагрузки применяется полная мощность, а не половинная.
Единственный недостаток схемы в том, что форма переменного напряжения во время нагрузки из-за специфики работы тиристоров оказывается не синусоидальной. Все это приводит к помехам по сети. Для исправления в схеме проблемы достаточно встроить фильтры последовательно нагрузке. Их можно вытащить из сломанного телевизора.
Второй вариант — регулятор напряжения с трансформатором
Не вызывающий помех в сети и дающий синусоидальное напряжение прибор, собирать труднее предыдущего. ЛАТР, схема которого имеет биополярный VT 1, в принципе тоже получится сделать самостоятельно. Причем транзистор служит регулирующим элементом в устройстве. Мощность в нем зависит от нагрузки. Работает он как реостат. Такая модель позволяет изменять рабочее напряжение не только при реактивных нагрузках, но и активных.
Однако представленная схема автотрансформатора тоже не идеальна. Ее минус в том, что функционирующий регулирующий транзистор выделяет очень много тепла. Для устранения недостатка понадобится мощный теплоотводящий радиатор, площадь которого равна не менее 250 см ².
В этом случае применяется трансформатор T 1. Он должен иметь вторичное напряжение около 6—10 В и мощность примерно 12—15 Вт. Диодный мост VD 6 осуществляет выпрямление тока, который впоследствии проходит к транзистору VT 1 в любом варианте полупериода через VD 5 и VD 2. Базовый ток транзистора регулируется переменным резистором R 1, изменяя тем самым характеристики тока нагрузки.
Вольтметром PV 1 контролируют размеры напряжения на выходе из автотрансформатора. Он используется с расчетом напряжения от 250—300 В. Если появляется необходимость увеличить нагрузку, тогда стоит заменить диоды VD 5- VD 2 и транзистор VD 1 на более мощные. Естественно, за этим последует расширение площади радиатора.
Как видно, собрать своими руками ЛАТР, возможно, нужно только иметь немного знаний в данной области и закупить все необходимые материалы.
rimeiks › Блог › Давняя задумка — кольцевой трансформатор на сердечнике от асинхронного электродвигателя.
Когда-то очень давно, в начале 90-х я служил в Литве в г. Каунас на ведущем авиаремонтном заводе ВВС по вертолетам Ми-8. Сказать, что этот завод был большим, значит ничего не сказать. Одно то, что завод выпускал по 22 откапиталенных вертолета в месяц говорит о многом. Но речь не о том. Стал я там начальником смешанного цеха по ремонту вооружения, слесарно-механической обработки, гальваники и пр. и т.д. и т.п.
Чем отличались люди, работающие на авиаремонтных заводах, а это был мой второй завод (я начинал службу в Омске на таком же заводе, только значительно меньшем). Люди отличались высокой степенью «рукастости», то есть самодельщики, да еще вооруженные авиационными знаниями и технологиями.
Как известно, в те годы самодельщикам было очень тяжело, в магазинах практически ничего не было. Высоким статусом обладал гаражный «кулибин», владевший сварочным аппаратом. Вот и у меня давно зрело решение построить свой сварочник. Да еще такой, чтобы работал от простой гаражной розетки.
Перелопатив горы журналов и литературы по самодеятельности, я несколько раз встречал самодельные аппараты построенные на основе ЛАТРов.
ЛАТР — лабораторный автотрансформатор, однообмоточный, позволяющий регулировать напряжение от 0 до несколько большего, чем в сети напряжения, как правило, до 250 Вольт. Но главное полезное свойство для сварочного аппарата у ЛАТРа было то, что изготавливались они на тороидальном или, по-русски, кольцевом сердечнике, не имевшем зазоров и поэтому обладавшим практически 100% КПД, вследствие отсутствия потерь в магнитном зазоре. Мощность ЛАТРов выбиралась 10 А, т.е 2 кВт, что при 40-50 Вольтах на выходе, обеспечивало сварочный ток 40-50 Ампер. Это конечно было хорошо, но хотелось большего.
Теперь, немного теории, я думаю, полезной и для современных кулибиных.
Как известно, мощность трансформатора определяется, в основном, площадью сечения магнитопровода — сердечника, на который установлены, намотаны обмотки. Второй фактор — сечение обмоточных проводов, оно определяется по токам и ограничиваются еще и возможностью уместить обмотки в окна сердечника.
Итак, имеем сердечник, ранее работавший (новый врятли доступен) в трансформаторе известной мощности. Для расчета, радиолюбители-электронщики применяют упрощенные формулы.
Измеряем площадь сечения сердечника. Для Ш-образных пластин, из которых набран сердечник — площадь среднего штыря, куда будет намотана обмотка. Площадь вычисляется в квадратных сантиметрах
Измеряем ширину пластины, умнощаем на толщину набора пластин и вычисляем:
50/S, где 50 — коэффициент для трансформаторов длительной или непрерывной работы, можно применить 40 — для трансформаторов, выключаемых после работы. В результате этих вычислений получаем количество витков на 1 Вольт
Для намоточных проводов применяют правило — 1 квадратный мм сечения на 10 Ампер, ВНИМАНИЕ не путать площадь сечения с диаметром! Вспоминаем школу и вычисляем площадь круга.
И вот, возвращаясь к кольцевым сердечникам, попросил меня мастер слесарно-механического участка помочь ему сделать сварочник.
Не помню уже где, но вычитал идею использовать в качестве кольцевого сердечника статор от асинхронного электродвигателя. Нашел мастер на свалке старый 4 кВт двигатель (тогда еще всё валялось), разобрали мы его, выковыряли обмотки, выбили сердечник. На токарном станке срезали пазы для обмоток внутри сердечника, и я занялся расчетом. Намотали авиационными несгораемыми проводами (ПТЛ-200) вторичку сделали на 50 Вольт. Результат превзошел ожидания! Сварочник варил даже электродом пятеркой. И всё из розетки.
Впоследствии к нему добавили выпрямитель и и регулятор тока, мастер ходил как петух довольный.
Вот сейчас, заимев гараж, захотелось мне в его оснащение добавить этот чудо-трансформатор. О его возможном применении напишу ниже.
На свалке завода «приватизировал» статор от могучего электродвигателя. Весу в нем было, килограмм 60-70, но своё же не тянет, пыхтя, кряхтя и попёрдывая, завалил я его в багажник своей Волги.
Фото его еле нашел
Разбив кувалдой ребристую чугуняку корлуса, я из него добыл сердечник статора. Медь обмоток выковыряли еще до меня.
Сын на работе вырезал на токарном станке пазы и приварил к сжимающим кольцам ножки и ручку для переноски этого тяжеловеса.
Обмерил сердечник, получилось 15 см — толщина набора, 2,5 см — ширина кольца. Площадь сечения — 37,5 кв. см.
Далее, обмотал сердечник стеклотканевой лентой, чтобы предохранить изоляцию проводов.
Далее, рассчитал число витков первичной обмотки. 220 х 50/37,5 = 293 Витка.
Далее — провод. На 20 Ампер (4 кВт из розетки) решил мотать сложенным вдвое проводом БПВЛ-0,7
Несколько запутанную бухту 440 метров перемотали сложив начало и конец.
Для намотки из ДВП я вырезал челнок.
Далее, пошло самое интересное и муторное — намотка. 293 витка — это и много и немного, по сравнению с маломощными трансформаторами.
В результате получилась обмотка в два слоя. Для контроля работы, тем же проводом намотал 2 витка, замерял напряжение — 2,4 Вольта. Всё правильно! В качестве баловства замыкаю концы, они начинают весело светиться.
На этом позавчера закончили. Вчера вечером занимались с Жекой Ascender с его БК Мультитроникс, а сегодня я опять продолжил эксперименты с уже наполовину намотанным трансформатором.
Тут надо прояснить для чего он нужен. Задумывался он как трансформатор для точечной сварки и споттера.
А тут еще назрела переборка передней подвески, решил попробовать его для разогрева прикипевших болтов и гаек.
Накрутил вторичку счетверенным проводом 5 мм диаметром. Концы временно, для экспериментов стянул на болты с большими шайбами.
Она выдала 1,2 Вольта.
Далее — пробы. Беру шпильку М12 с накрученной гайкой. Прижимаю один коней обмотки к свободному концу шпильки, второй — к гайке. Трансформатор глухо зарычал, свет при этом не потух. Секунд 5-10 я держал шпильку под током, потом мне стало горячо, держал-то голыми руками, разогрелись болты, стягивающие провода. И вот, что интересно, испытуемая шпилька была просто теплой, зато гайка почти дымилась. Это можно объяснить худшим сопротивлением в резьбе, по сравнению со сплошным телом шпильки. Основная энергия выделилась на сопротивлении — т.е. резьбе. Это очень хорошо, в закисших соединениях важно разогреть ржавчину в резьбе.
В дальнейшем будем пробовать на объекте, изменяя напряжение и ток.
Еще одно применение данного трансформатора — разделитель. Поскольку первичная обмотка намотана двойным проводом, то, расцепив их, получаем две идентичные обмотки. Это позволит «отвязаться» от «земли» в обычной розетке и пользоваться 220 Вольт в сырых местах, не боясь электротравмы. Ударит только, если тупо взяться за оба провода. Если держаться за один, можно стоять босиком в луже и ничего не произойдет.
Автотрансформатор схема своими руками
Принцип действия
Основной принцип действия автотрансформатора аналогичен обычному аппарату:
Особенность автотрансформатора в том, что часть витков первичной обмотки является также вторичной. В связи с тем, что ЭДС в первичной и вторичной обмотках направлены встречно, ток в общей части катушки I¹² равен разнице I¹ и I². При равенстве входного и выходного напряжения или Ктр=1 I¹² определяется индуктивным сопротивлением катушки.
Недостатки эксплуатации
Несмотря на то что автотрансформатор гораздо эффективнее и дешевле в эксплуатации, чем обычный трансформатор, в его использовании тоже могут возникать проблемы. Одним из серьезных недостатков является невозможность гальванической развязки обмоток.
Незначительный рассеивающийся электрический поток между обмотками может спровоцировать короткое замыкание при внезапных неисправностях и неполадках. Чтобы не спровоцировать нарушение функционирования агрегатов, вторичная и первичная обмотка должны иметь идентичные соединения.
В представленной системе затрудняется сохранение электромагнитного баланса, нормализовать который можно увеличением корпуса оборудования. При большой трансформации диапазона не получится существенная экономия энергоресурсов.
Принцип работы автотрансформатора и его конструктивные особенности не позволяют сделать систему с односторонним заземлением. При ремонте и устранении аварийных ситуаций персонал, обслуживающий оборудование, может подвергаться опасности из-за вероятности возникновения высшего напряжение и на низших обмотках. В таком случае установится соединение всех элементов с высоковольтной частью, а изоляция проводников может оказаться пробитой, что не допускается правилами безопасности.
Мощность автотрансформатора
Мощность любого электроаппарата равна произведению тока на напряжение Р=I*A. В обычном трансформаторе она равна мощности нагрузки с учетом КПД.
Мощность автотрансформатора рассчитывается немного иначе. В повышающем напряжение аппарате она складывается из мощности первичной обмотки части Р¹²=I¹²*U¹² и мощности повышающей обмотки Р²=I²*U⅔. В связи с тем, что ток, протекающий через первичную катушку меньше, чем ток нагрузки, то мощность автотрансформатора меньше мощности нагрузки. Фактически, мощность аппарата определяется разностью первичного и вторичного напряжений и током вторичной обмотки P=(U¹-U²)*I².
Особенно это заметно при небольших (10-20%) отклонениях выходного напряжения. Аналогичным образом рассчитывается понижающий автотрансформатор.
Информация! Это позволяет уменьшить сечение магнитопровода и диаметр провода обмотки. В связи с этим автотрансформатор легче и дешевле обычного устройства.
Однофазные и трехфазные приборы
В разных отраслях сегодня используются трехфазные и однофазные агрегаты. Последние представлены таким типом оборудования, как ЛАТР (лабораторные автотрансформаторы, рассчитанные на низковольтные сети). В линиях с повышенным напряжением используются понижающие автотрансформаторы, например, 220/100 и 220/110, в которых вторичная обмотка является частью первичной. В конструкциях повышающего типа первичная обмотка — это часть вторичного контура.
Схема автотрансформатора однофазного типа предполагает несколько отводов, которые ответвляются от основной катушки. Именно они и определяют понижающую или повышающую способность агрегата. В трехфазных конструкциях может быть два или три контура, а соединение обмоток напоминает по форме звезду. Они предназначены для работы нагревательных элементов в печах.
Аппараты, представленные с тремя обмотками, являются рабочими элементами высоковольтных сетей. Тип контакта предполагает соединения нулевого провода со звездой, что позволяет понизить напряжение, повысить КПД линии и уменьшить расходы на передачу энергии. Одним из недостатков является увеличение количества токов короткого замыкания.
Что такое ЛАТР
Кроме силовых аппаратов, заменяющих обычные трансформаторы, в школах, институтах и лабораториях используются ЛАТРы – Лабораторные АвтоТРанформаторы. Эти устройства используются для плавного изменения напряжения на выходе аппарата. Самые распространенные конструкции представляют из себя катушку, намотанную на тороидальном магнитопроводе. С одной из сторон провод очищен от лака и по нему при помощи поворотного механизма двигается графитный ролик.
Питающее напряжение подаётся на концы катушки, а вторичное снимается с одного из концов и графитного ролика. Поэтому ЛАТР не может поднимать напряжение выше сетевого, в некоторых модификациях выше 250В.
Кроме катушечных, есть электронные ЛАТРы. Фактически, это не автотрансформатор, а регулятор напряжения. Есть разные виды таких устройств:
Совет! Для того, чтобы получить напряжение выше сетевого, ЛАТР подключается ко вторичной обмотке повышающего трансформатора.
Устройство и технические характеристики
Сфера применения автотрансформаторов — питание бытовой техники, промышленные электросети, пуск асинхронных электродвигателей. На крупных производственных объектах они необходимы для повышения напряжения и одновременного уменьшения возможных потерь в линиях электропередач. Благодаря особенностям конструкции, оборудование составило серьезную конкуренцию обычным трансформаторам. В зависимости от назначения, устройствам присваивается буквенное наименование:
- С — для собственных нужд отдельных электрических станций.
- П — для электролиний с постоянным током.
- М — для металлургических предприятий.
- ПН — для подключения электронасосов погружного типа.
- Б — для буровых установок и бетоногрейных установок.
- Э — для экскаваторов с электрооборудованием.
- ТО — для организации временного освещения или тепловой обработки грунта или бетона.
В преобразователях электромагнитного типа передача энергии между обмотками происходит благодаря возникновению магнитного поля, сосредоточенного внутри магнитопровода. Отличие автотрансформатора от трансформатора заключается в наличии еще и электрической связи. В момент установки уменьшенного тока в той части обмотки, которая является общей между двумя цепями, возникает увеличение или понижение напряжения. По мнению специалистов, такое устройство позволяет сэкономить сталь, сократив ее количество для создания магнитопровода с меньшим сечением.
Большинство других деталей в конструкции практически ничем не отличается от комплектующих трансформатора. Принцип функционирования агрегата заключается в следующем: в момент создания нагрузки по обмотке перемещается электрический поток, а по проводнику — ток первичный. Происходит геометрическое сложение двух потоков, в результате чего на обмотку выдаются совсем малые показатели.
Изготовление самодельного ЛАТРа
В продаже есть достаточно готовых устройств, но при необходимости его можно сделать самостоятельно. За основу лучше взять трансформатор на О- или Ш-образном магнитопроводе. Изготовление ЛАТРа на тороидальном железе сводится к его перемотке и требует очень высокой аккуратности при наматывании катушки.
Подготовка материала
Для изготовления регулируемого автотрансформатора необходимы:
Расчет провода
Перед началом намотки катушки необходимо определить сечение провода и необходимое количество витков/вольт (n/v). Этот расчёт производится по поперечному сечению магнитопровода при помощи онлайн-калькуляторов или по специальным таблицам.
Если для изготовления устройства используется исправный трансформатор, то эти параметры определяются по имеющимся обмоткам:
Совет! Если первичная обмотка не была пропитана лаком и разматывается без нарушения изоляции, то допускается использовать её для намотки катушки автотрансформатора.
Схема
Перед началом работ составляется схема обмотки с указанием количества витков и напряжением на каждом из выводов. В отличие от обычного трансформатора автотрансформатор имеет только одну обмотку, которая изображается с одной из сторон черты, символизирующей магнитопровод.
Для расчетов витков необходимо определить число выводов. Оно зависит от количества положений многопозиционного переключателя. Один из отводов может совпадать с сетевым выводом:
Совет! При необходимости сделать повышающий автотрансформатор к первичной обмотке добавляется необходимое количество витков. Для этого допускается использовать провод, снятый со вторичной обмотки.
Намотка катушки
После выполнения всех расчётов производится намотка катушки. Она выполняется на готовом или специально изготовленном каркасе вручную или при помощи намоточного станка:
Процесс сборки
После завершения намотки и высыхания лака производится сборка автотрансформатора:
Проверка
После сборки работоспособность устройства необходимо проверить:
Устройство автотрансформатора
Имеется одна общая обмотка, расположенная на магнитопроводе ЛАТРа, а от нее уже отходят три дополнительных вывода. У старых моделей автотрансформатора на вторичной обмотке расположен токосъемный контакт, позволяющий:
Наиболее распространенный тип автотрансформатора — это тороидальный магнитопровод. Он представляет собой сердечник в форме кольца, сделанный из электротехнической стали.
На сердечник намотана медная проволока, или обмотка. Кроме того, конструкция прибора имеет дополнительную отпайку — отвод от обмотки. В целом контактов получается ровно три.
Для больших трансформаций лучше всего не использовать ЛАТР. Причины в следующем:
Типы агрегатов
В зависимости от схемы автотрансформатора и других особенностей конструкции выделяют несколько разновидностей оборудования. Наиболее популярными являются 8 из них, остальные встречаются реже. Каждый из них выбирается в соответствии с будущими условиями эксплуатации:
- АТД — оборудование с устаревшей конструкцией мощностью в районе 25 Вт.
- ВУ- 25-Б — позволяет уравнивать токи на вторичной обмотке, если используется схема дифференциальной защиты для силового трансформатора.
- ЛАТР-1 — лабораторный автотрансформатор, который может использоваться при 127 В.
- ЛАТР-2 — предназначен для бытовых сетей с напряжением 220 В, регулирует показатели напряжения контактом, который скользит по виткам обмотки.
- ДАТР-1 — разработан для функционирования в условиях невысокой нагрузки.
- РНО — предназначен для сетей с повышенной нагрузкой.
- АТНЦ — незаменимое оборудование в сфере телеизмерений.
- РНТ — оборудование, рассчитанное на максимально сильные нагрузки в сетях особого назначения.
Кроме того, классификация предполагает деление агрегатов на группы с малой мощностью (не более 1 кВ), средней мощностью свыше 1 кВ и силовые приборы. Использование автотрансформаторов позволяет повысить КПД в работе энергетических систем, а также уменьшить стоимость транспортировки энергии.
Схема электронного прибора
Купить надежный ЛАТР при имеющемся ассортименте — задача не из легких. Слишком много низкокачественных изделий представлено на рынке. Как вариант, можно приобрести промышленный образец, но цены на него довольно высокие, да и габариты немаленькие. В этом случае более приемлемым вариантом будет создать автотрансформатор своими руками.
Необходимые для сборки материалы
Материалы, которые обязательно понадобятся для сборки самодельного электронного ЛАТРа на полевом транзисторе, следующие:
Расчёт обмотки ЛАТРа
Для начала необходимо определиться, в каких пределах на тиристорах будет работать ЛАТР. Оптимальное значение питания сети — 220 В. Значения вторичных напряжений — соответственно, 127, 180 и 250 В. Мощность при таких параметрах не должна превышать 300 Вт. Но можно определить эти значения и самостоятельно, главное, чтобы всё друг другу соответствовало.
Теперь нужно рассчитать обмотку. Рассчитывать её надо по большему току. Наибольшее значение тока можно получить, преобразовывая напряжение 200 В в 127 В. Автотрансформатор при таких условиях становится понижающим. Максимальный ток, который проходит в обмотке обеих сетей, рассчитывается следующим образом:
- Адгезивные клеи промышленного применения: надежные решения для масштабных проектов
- Планетарные редукторы: принцип работы, нюансы выбора и эксплуатации
- Размеры и подключение различных видов отопительных батарей
- Основные факторы, влияющие на плодородие почвы
- Как сделать мебель для дома и дачи своими руками из профильных труб