Допустимый прогиб металлической балки

Допустимый прогиб металлической балки

Сайт инженера-проектировщика

Свежие записи

Предельные прогибы

Согласно: СП 20.13330.2016:

Приложение Д

Прогибы и перемещения Д.2

Предельные прогибы Д.2.1

Вертикальные предельные прогибы элементов конструкций

Вертикальные предельные прогибы элементов конструкций и нагрузки, от которых следует определять прогибы, приведены в таблице Д.1. Требования к зазорам между смежными элементами приведены в Д.1.6 приложения Д.1.

l — расчетный пролет элемента конструкции:

а — шаг балок или ферм, к которым крепятся подвесные крановые пути.

1 Для консоли вместо l следует принимать удвоенный ее вылет.

2 Для промежуточных значений l в позиции 2, а предельные прогибы следует определять линейной интерполяцией, учитывая требования Д.1.7 приложения Д.

3 В позиции 2, а цифры, указанные в скобках, следует принимать при высоте помещений до 6 м включительно.

4 Особенности вычисления прогибов по позиции 2, г указаны в Д.1.8 приложения Д.

Д.2.2 Предельные прогибы (физиологические)

Предельные прогибы элементов перекрытий (балок, ригелей, плит), лестниц, балконов, лоджий, помещений жилых и общественных зданий, а также бытовых помещений производственных зданий исходя из физиологических требований следует определять по формуле

(Д.1)

где g — ускорение свободного падения;

р — нормативное значение нагрузки от людей, возбуждающих колебания, принимаемое по таблице Д.2;

р1 — пониженное нормативное значение нагрузки на перекрытия, принимаемое по таблице Д.2;

q — нормативное значение нагрузки от веса рассчитываемого элемента и опирающихся на него конструкций;

n — частота приложения нагрузки при ходьбе человека, принимаемая по таблице Д.2;

b — коэффициент, принимаемый по таблице Д.2.

Позиции 4, бг, кроме танцевальных

Q — вес одного человека, принимаемый равным 0,8 кН;

α — коэффициент, принимаемый равным 1,0 для элементов, рассчитываемых по балочной схеме, 0,5 — в остальных случаях (например, при опирании плит по трем или четырем сторонам);

а — шаг балок, ригелей, ширина плит (настилов), м;

Прогибы следует определять от суммы нагрузок φ1р + р1 + q, где φ1 — коэффициент, определяемый по формуле (8.1).

Д.2.3 Горизонтальные предельные прогибы колонн
и тормозных конструкций от крановых нагрузок

Д.2.3.1 Горизонтальные предельные прогибы колонн зданий, оборудованных мостовыми кранами, крановых эстакад, а также балок крановых путей и тормозных конструкций (балок или ферм), следует принимать по таблице Д.3, но не менее 6 мм.

Прогибы следует проверять на отметке головки крановых рельсов от сил торможения тележки одного крана, направленных поперек кранового пути, без учета крена фундаментов.

h — высота от верха фундамента до головки кранового рельса (для одноэтажных зданий, крытых и открытых крановых эстакад) или расстояние от оси ригеля перекрытия до головки кранового рельса (для верхних этажей многоэтажных зданий);

Д.2.3.2 Горизонтальные предельные сближения крановых путей открытых эстакад от горизонтальных и внецентренно приложенных вертикальных нагрузок от одного крана (без учета крена фундаментов), ограничиваемые исходя из технологических требований, следует принимать равными 20 мм.

Д.2.4 Горизонтальные предельные перемещения и прогибы зданий,
отдельных элементов конструкций и опор конвейерных галерей
от ветровой нагрузки, крена фундаментов
и температурных климатических воздействий

Д.2.4.1 Горизонтальные предельные перемещения зданий, ограничиваемые исходя из конструктивных требований (обеспечение целостности заполнения каркаса стенами, перегородками, оконными и дверными элементами), приведены в таблице Д.4. Указания по определению перемещений приведены в Д.1.9 приложения Д.

Горизонтальные перемещения зданий следует определять с учетом крена (неравномерных осадок) фундаментов. При этом нагрузки от веса оборудования, мебели, людей, складируемых материалов и изделий следует учитывать только при сплошном равномерном загружении всех перекрытий многоэтажных зданий этими нагрузками (с учетом их снижения в зависимости от числа этажей), за исключением случаев, при которых по условиям нормальной эксплуатации предусматривается иное загружение.

Для зданий высотой до 40 м (и опор конвейерных галерей любой высоты), расположенных в ветровых районах I — IV, крен фундаментов, вызываемый ветровой нагрузкой, допускается не учитывать.

h — высота многоэтажных зданий, равная расстоянию от верха фундамента до оси ригеля покрытия;

hs — высота этажа в одноэтажных зданиях, равная расстоянию от верха фундамента до низа стропильных конструкций; в многоэтажных зданиях; для нижнего этажа — равная расстоянию от верха фундамента до оси ригеля перекрытия: для остальных этажей — равная расстоянию между осями смежных ригелей.

1 Для промежуточных значений hs (по позиции 3) горизонтальные предельные перемещения следует определять линейной интерполяцией.

2 Для верхних этажей многоэтажных зданий, проектируемых с использованием элементов покрытий одноэтажных зданий, горизонтальные предельные перемещения следует принимать такими же, как и для одноэтажных зданий. При этом высота верхнего этажа hsпринимается от оси ригеля междуэтажного перекрытая до низа стропильных конструкций.

3 К податливым креплениям относятся крепления стен или перегородок к каркасу, не препятствующие смешению каркаса (без передачи на стены или перегородки усилий, способных вызвать повреждения конструктивных элементов); к жестким — крепления, препятствующие взаимным смещениям каркаса, стен или перегородок.

Д.2.4.2 Для 2-го предельного состояния горизонтальные перемещения бескаркасных зданий от ветровых нагрузок не ограничиваются.

Д.2.4.3 Горизонтальные предельные прогибы стоек и ригелей фахверка, а также навесных стеновых панелей от ветровой нагрузки, ограничиваемые исходя из конструктивных требований, следует принимать равными l/200, где l — расчетный пролет стоек или панелей.

Д.2.4.4 Горизонтальные предельные прогибы опор конвейерных галерей от ветровых нагрузок, ограничиваемые исходя из технологических требований, следует принимать равными h/250, где h — высота опор от верха фундамента до низа ферм или балок.

Д.2.4.5 Горизонтальные предельные прогибы колонн (стоек) каркасных зданий от температурных климатических и усадочных воздействии следует принимать равными:

hs/150 — при стенах и перегородках из кирпича, гипсобетона, железобетона и навесных панелей;

hs/200 — при стенах, облицованных естественным камнем, из керамических блоков, из стекла (витражи), где hs — высота этажа, а для одноэтажных зданий с мостовыми кранами — высота от верха фундамента до низа балок кранового пути.

При этом температурные воздействия следует принимать без учета суточных колебаний температур наружного воздуха и перепада температур от солнечной радиации.

При определении горизонтальных прогибов от температурных климатических и усадочных воздействий их значения не следует суммировать с прогибами от ветровых нагрузок и от крена фундаментов.

Д.2.5 Предельные выгибы элементов междуэтажных перекрытий
от усилий предварительного обжатия

Предельные выгибы fu элементов междуэтажных перекрытий, ограничиваемые исходя из конструктивных требований, следует принимать равными 15 мм при l ≤ 3 м и 40 мм — при l ≥ 12 м (для промежуточных значений lпредельные выгибы следует определять линейной интерполяцией).

Выгибы f следует определять от усилий предварительного обжатия, собственного веса элементов перекрытий и веса пола.

Согласно: СП 20.13330.2011 (Не действует):

Е.2 Предельные прогибы

Е.2.1 Вертикальные предельные прогибы элементов конструкций

Вертикальные предельные прогибы элементов конструкций и нагрузки, от которых следует определять прогибы, приведены в таблице Е.1. Требования к зазорам между смежными элементами приведены в Е.1.6 приложения Е.1.

Е.2.2 Предельные прогибы (физиологические)

Предельные прогибы элементов перекрытий (балок, ригелей, плит), лестниц, балконов, лоджий, помещений жилых и общественных зданий, а также бытовых помещений производственных зданий исходя из физиологических требований следует определять по формуле

где g — ускорение свободного падения;

р — нормативное значение нагрузки от людей, возбуждающих колебания, принимаемое по таблице Е.2;

р1 — пониженное нормативное значение нагрузки на перекрытия, принимаемое по таблице Е.2;

q — нормативное значение нагрузки от веса рассчитываемого элемента и опирающихся на него конструкций;

п — частота приложения нагрузки при ходьбе человека, принимаемая по таблице Е.2;

b — коэффициент, принимаемый по таблице Е.2.

Прогибы следует определять от суммы нагрузок j1p + р1 + q, где j1 — коэффициент, определяемый по формуле (8.1).

Е.2.3 Горизонтальные предельные прогибы колонн и тормозных конструкций от крановых нагрузок

Е.2.3.1 Горизонтальные предельные прогибы колонн зданий, оборудованных мостовыми кранами, крановых эстакад, а также балок крановых путей и тормозных конструкций (балок или ферм) следует принимать по таблице Е.3, но не менее 6 мм.

Прогибы следует проверять на отметке головки крановых рельсов от сил торможения тележки одного крана, направленных поперек кранового пути, без учета крена фундаментов.

Е.2.3.2 Горизонтальные предельные сближения крановых путей открытых эстакад от горизонтальных и внецентренно приложенных вертикальных нагрузок от одного крана (без учета крена фундаментов), ограничиваемые исходя из технологических требований, следует принимать равными 20 мм.

Е.2.4 Горизонтальные предельные перемещения и прогибы зданий, отдельных элементов конструкций и опор конвейерных галерей от ветровой нагрузки, крена фундаментов и температурных климатических воздействий

Е.2.4.1 Горизонтальные предельные перемещения зданий, ограничиваемые исходя из конструктивных требований (обеспечение целостности заполнения каркаса стенами, перегородками, оконными и дверными элементами), приведены в таблице Е.4. Указания по определению перемещений приведены в Е.1.9 приложения Е.

Горизонтальные перемещения зданий следует определять с учетом крена (неравномерных осадок) фундаментов. При этом нагрузки от веса оборудования, мебели, людей, складируемых материалов и изделий следует учитывать только при сплошном равномерном загружении всех перекрытий многоэтажных зданий этими нагрузками (с учетом их снижения в зависимости от числа этажей), за исключением случаев, при которых по условиям нормальной эксплуатации предусматривается иное загружение.

Для зданий высотой до 40 м (и опор конвейерных галерей любой высоты), расположенных в ветровых районах I-IV, крен фундаментов, вызываемый ветровой нагрузкой, допускается не учитывать.

Максимально допустимый прогиб металлической балки

ОБЩИЕ УКАЗАНИЯ

10.1. При расчете строительных конструкций по прогибам (выгибам) и перемещениям должно быть выполнено условие

где f – прогиб (выгиб) и перемещение элемента конструкции (или конструкции в целом), определяемые с учетом факторов, влияющих на их значения, в соответствии с пп. 1-3 рекомендуемого приложения 6;

fu – предельный прогиб (выгиб) и перемещение, устанавливаемые настоящими нормами.

Расчет необходимо производить исходя из следующих требований:

а) технологических (обеспечение условий нормальной эксплуатации технологического и подъемно-транспортного оборудования, контрольно-измерительных приборов и т.д.);

б) конструктивных (обеспечение целостности примыкающих друг к другу элементов конструкций и их стыков, обеспечение заданных уклонов);

в) физиологических (предотвращение вредных воздействий и ощущений дискомфорта при колебаниях);

г) эстетико-психологических (обеспечение благоприятных впечатлений от внешнего вида конструкций, предотвращение ощущения опасности).

Каждое из указанных требований должно быть выполнено при расчете независимо от других.

Ограничения колебаний конструкций следует устанавливать в соответствии с нормативными документами п. 4 рекомендуемого приложения 6.

10.2. Расчетные ситуации, для которых следует определять прогибы и перемещения, соответствующие им нагрузки, а также требования, касающиеся строительного подъема, приведены в п. 5 рекомендуемого .

10.3. Предельные прогибы элементов конструкций покрытий и перекрытий, ограничиваемые исходя из технологических, конструктивных и физиологических требований, следует отсчитывать от изогнутой оси, соответствующей состоянию элемента в момент приложения нагрузки, от которой вычисляется прогиб, а ограничиваемые исходя из эстетико-психологических требований – от прямой, соединяющей опоры этих элементов (см. также п. 7 рекомендуемого приложения 6).

10.4. Прогибы элементов конструкций не ограничиваются исходя из эстетико-психологических требований, если не ухудшают внешний вид конструкций (например, мембранные покрытия, наклонные козырьки, конструкции с провисающим или приподнятым нижним поясом) или если элементы конструкций скрыты от обзора. Прогибы не ограничиваются исходя из указанных требований и для конструкций перекрытий и покрытий над помещениями с непродолжительным пребыванием людей (например, трансформаторных подстанций, чердаков).

Примечание. Для всех типов покрытий целостность кровельного ковра следует обеспечивать, как правило, конструктивными мероприятиями (например, использованием компенсаторов, созданием неразрезности элементов покрытия), а не повышением жесткости несущих элементов.

10.5. Коэффициент надежности по нагрузке для всех учитываемых нагрузок и коэффициент динамичности для нагрузок от погрузчиков, электрокаров, мостовых и подвесных кранов следует принимать равными единице.

Коэффициенты надежности по ответственности необходимо принимать в соответствии с обязательным приложением 7.

10.6. Для элементов конструкций зданий и сооружений, предельные прогибы и перемещения которых не оговорены настоящим и другими нормативными документами, вертикальные и горизонтальные прогибы и перемещения от постоянных, длительных и кратковременных нагрузок не должны превышать 1/150 пролета или 1/75 вылета консоли.

ВЕРТИКАЛЬНЫЕ ПРЕДЕЛЬНЫЕ ПРОГИБЫ ЭЛЕМЕНТОВ КОНСТРУКЦИЙ

10.7. Вертикальные предельные прогибы элементов конструкций и нагрузки, от которых следует определять прогибы, приведены в табл. 19. Требования к зазорам между смежными элементами приведены в п. 6 рекомендуемого приложения 6.

Вертикальные предельные прогибы fu

Нагрузки для определения вертикальных прогибов

1. Балки крановых путей под мостовые и подвесные краны, управляемые:

с пола, в том числе тельферы (тали)

От одного крана

из кабины при группах режимов работы (по ГОСТ 25546-82):

Двутавровая балка

Обратите внимание на то, что балки из двутавра применяются несколько реже в силу их формы. Однако также не стоит забывать, что такой элемент конструкции выдерживает гораздо большие нагрузки, чем уголок или швеллер, альтернативой которых может стать двутавровая балка.

Расчет прогиба двутавровой балки стоит производить в том случае, если вы собираетесь использовать ее в качестве мощного элемента конструкции.

Также обращаем ваше внимание на то, что не для всех типов балок из двутавра можно производить расчет прогиба. В каких же случаях разрешено рассчитать прогиб двутавровой балки? Всего таких случаев 6, которые соответствуют шести типам двутавровых балок. Эти типы следующие:

  • Балка однопролетного типа с равномерно распределенной нагрузкой.
  • Консоль с жесткой заделкой на одном конце и равномерно распределенной нагрузкой.
  • Балка из одного пролета с консолью с одной стороны, к которой прикладывается равномерно распределенная нагрузка.
  • Однопролетная балка с шарнирным типом опирания с сосредоточенной силой.
  • Однопролетная шарнирно опертая балка с двумя сосредоточенными силами.
  • Консоль с жесткой заделкой и сосредоточенной силой.

Проверка прогибов стальной балки

При расчете стальных балок по II-й ГПС (по прогибам) необходимо создавать раскрепления для прогибов:

Информация из справки LIRA SAPR (СправкаПояснения СтальПроверки прогибов):

Проверка прогиба осуществляется сопоставлением реально определенного относительного прогиба (L/f) с максимально возможным для данного конструктивного элемента прогибом.

В данной версии проверка выполняется только для балок на основании состава загружений во всех сочетаниях. Учитываются коэффициенты надежности по нагрузке (заданные при формировании РСУ в среде ПК ЛИРА-САПР) и коэффициенты сочетания.

Перемещения, вызванные загружениями с долей длительности 0, в данном расчете не используются.

Прогибы находятся для каждого сечения на основании распределения MY1, MZ1, QY1, QZ1 по длине элемента. Соответственно, увеличение количества расчетных сечений способствует более точному определению прогибов (особенно, если воздействуют сосредоточенные силовые факторы).

Нормативные документы

Главное меню

СНиП 2.01.07-85 (2003) НАГРУЗКИ И ВОЗДЕЙСТВИЯ

Тут может возникнуть дополнительный вопрос: а как определить значение коэффициента β, который присутствует чуть ли не во всех формулах данной таблицы?

СП на этот вопрос прямого ответа не дает, однако по контексту таблицы можно догадаться, что

β = h0/h (544.3)

где h — максимальная высота балки (как правило посредине пролета), h0 — высота балки в начале и(или) конце пролета.

Соответственно βh = h0. Так же из приведенной таблицы становится понятным и то, почему при постоянной по всей длине балки высоте сечения, т.е. при β = 1, коэффициент, учитывающий возможное изменение высоты сечения балки, также равен единице — k = 1.

Конечно же в представленной таблице Е.3 представлены далеко не все возможные случаи загружения балок. Как поступать в случаях, когда на балку действуют другие нагрузки, например несимметичные распределенные или сосредоточенные, в СП опять же не объясняется.

Я считаю, что в таких случаях действующие нагрузки следует привести к эквивалентным симметричным равномерно распределенным или сосредоточенным, но это опять же лишь мое личное мнение.

В целом прогиб, определяемый расчетом, должен быть не больше допустимого:

f ≤ fд (544.4)

Значение допустимого прогиба определяется по таблице 19:

Таблица 19

Вот собственно и все, что мне хотелось сказать по поводу определения прогиба согласно требований СП 64.13330.2011 «Деревянные конструкции» (Актуализированная редакция СНиП II-25-80). Конкретные примеры определения прогиба деревянных балок приводятся отдельно.

Проверка прогибов стальной балки

При расчете стальных балок по II-й ГПС (по прогибам) необходимо создавать раскрепления для прогибов:

Информация из справки LIRA SAPR (СправкаПояснения СтальПроверки прогибов):

Проверка прогиба осуществляется сопоставлением реально определенного относительного прогиба (L/f) с максимально возможным для данного конструктивного элемента прогибом.

В данной версии проверка выполняется только для балок на основании состава загружений во всех сочетаниях. Учитываются коэффициенты надежности по нагрузке (заданные при формировании РСУ в среде ПК ЛИРА-САПР) и коэффициенты сочетания.

Перемещения, вызванные загружениями с долей длительности 0, в данном расчете не используются.

Прогибы находятся для каждого сечения на основании распределения MY1, MZ1, QY1, QZ1 по длине элемента. Соответственно, увеличение количества расчетных сечений способствует более точному определению прогибов (особенно, если воздействуют сосредоточенные силовые факторы).

В режиме локального расчета элемента (см. справочную систему СТК-САПР) имеется возможность расчета прогибов по огибающим эпюрам изгибающего момента в запас. Это может потребоваться, когда редактируются расчетные сочетания усилий (или нагрузок) и теряется связь с результатами расчета на ПК ЛИРА-САПР основной схемы.

На приведенном фрагменте показан механизм определения прогибов (они обозначены как di и dk) в конструктивном элементе с наложенными раскреплениями на элементы.

Если раскрепления не наложены, то прогиб принимается равным полному расстоянию до оси X.

Пример расчета однопролетной балки

Согласно нормативной документации прогиб определяется от действия нормативных нагрузок. Поскольку в LIRA SAPR все нагрузки прикладываются к узлам и элементам их расчётными значениями, при определении прогибов программа определяет нормативное значение нагрузок путём деления их на коэффициент надёжности.

Посмотреть какие приняты коэффициенты надёжности, а также ввести их вручную, если это необходимо, можно в окне параметров расчёта.

Подробнее о корректировке коэффициентов надёжности для расчета прогибов вручную читайте в статье «Коэффициенты к временным нагрузкам при проверке прогиба»

Предельно допустимый L/200=6000/200=30мм

Без задания раскреплений (по абсолютному перемещению узлов балки):
((39,8мм/ к-т надежности по нагрузке)/ 30мм))*100%=((39,8/1,1)/30)*100%=120,6%

С заданием раскреплений (по относительному перемещению узлов балки за вычетом перемещений опорных узлов):
((39,8мм-9,14)/ к-т надежности по нагрузке)/30мм))*100%=(((39,8-9,14)/1,1)/30)*100%=92,9%

Ручной ввод расчётной длины балки для расчёта прогибов

В диалоговом окне задания характеристик расчёта стальной балки присутствует группа параметров Расчёт по прогибу.

Информация из справки ЛИРА САПР:
Расчет по прогибу – данные для расчета прогиба. Длина пролета авто – вычисляется по положению раскреплений. Длина пролета точно – длина пролета при расчете приравнивается этому числу.

Рассмотрим раму из предыдущего примера, только теперь раскрепления для прогибов назначим для всех конструкций, а расчётные длины будем для первого случая задавать автоматическим способом, а для второго ручным.

Предельно допустимый прогиб при длине 6 м L/200=6000/200=30мм

Предельно допустимый прогиб при длине 4 м L/200=4000/200=20мм

Проценты использования по предельному прогибу

Длина балки 6 м:
((39,8мм-9,14)/ к-т надежности по нагрузке)/30мм))*100%=(((39,8-9,14)/1,1)/30)*100%=92,9%

Длина балки 4 м:
((39,8мм-9,14)/ к-т надежности по нагрузке)/30мм))*100%=(((39,8-9,14)/1,1)/20)*100%=139,4%

Расчёт прогибов стрельчатой арки

Пример — рама переменного сечения (РПС) пролётом 18 м. Соединение полурам в коньке — шарнирное, опирание полурам на фундамент — шарнирное.

При этом в параметрах «Дополнительные характеристики» необходимо указать вручную пролет, с которым программа будет сравнивать прогиб (автоматическое определение пролета возможно только для линейных балок, где все конечные элементы (КЭ) конструктивного элемента (КоЭ) лежат на одной оси):

Результаты определения прогибов в СТК-САПР:

Предельно допустимый L/200=17664/200=88.32 мм

Без задания раскреплений (по абсолютному значению на эпюре прогибов fz):
96.7/17644=1/182 — совпадает с результатом расчёта элемента №2

С заданием раскреплений (по относительному значению на эпюре прогибов fz):
(96.7-(-6.46))/17644=1/171 — совпадает с результатом расчёта элемента №4

Без задания раскреплений (по абсолютному значению перемещений узлов):
99.8/17644=1/177 — не совпадает ни с чем

Расчёт прогибов цилиндрической арки

Пример – цилиндрическая арка пролётом 18 м, стрелой подъёма f = 9 м. Соединение всех элементов между собой — жёсткое, опирание на фундамент — шарнирное.

Нагрузки на арку приложены их расчётными значениями. Значения нагрузок для определения прогибов принимаются согласно СП 20.13330.2016 Нагрузки и воздействия, таблица Д.1 Приложения Д. В данном примере арка является конструкцией покрытия, прогиб которой должен определяться от постоянных и длительных нагрузок (п.2 табл. Д.1). Для визуализации перемещений от нормативных значений нагрузок, необходимо создать особое РСН с нормативными длительными значениями нагрузок. Нагрузки в данном РСН нужно поделить на коэффициент надёжности, с учётом длительности. На конструкцию действуют два загружения:

Загружение 1 — постоянное, коэффициент надёжности 1.1;
Загружение 2 — кратковременное, коэффициент надёжности 1.2, доля длительности 0.35;

Вычислим коэффициенты для перехода к нормативным значениям

Загружение 1 Kn=1/1.1=0.91;
Загружение 2 Kn=1/1.2*0.35=0.292

Предельно допустимый прогиб L/200=18000/200=90 мм

Фактический прогиб (по абсолютному значению перемещений узлов): 32.2/18000=1/559 – меньше предельно допустимого значения.

Эти примеры помогут сделать расчет металлической балки без напряга

Металлические балки двутавровые

Кроме повсеместно ведущегося строительства многоэтажных зданий с большим числом квартир, широкое распространение получило сооружение частных домов, причем не только небольших одноэтажных, но и довольно крупных, с двумя и более этажами, иногда и с мансардой наверху или обитаемым чердаком. Для таких домов уже не подходит каркасный метод; материалом часто служит, вместо дерева, кирпич или железобетон. Возведение крупных частных домов должно вестись по всем правилам строительной науки, так как ошибки при проектировании или воплощении проекта могут привести к нежелательным последствиям.

Если строящийся дом представляет собой капитальное здание – из бетона, кирпича, шлакоблока, то для потолочных перекрытий, межэтажных и чердачных, целесообразно применить железобетонные плиты. Наиболее подходящий тип каркаса, способный выдержать вес таких перекрытий, – это каркас, элементом которого является металлическая балка двутаврового профиля.

Именно этот вид проката, установленный своей стенкой вертикально, обладает наибольшей несущей способностью. Естественно, фундамент и стены дома при этом должны быть достаточной прочности, чтобы выдерживать дополнительный вес от 0,5 до 1 тонны – столько металла, в зависимости от количества балок и номера профиля может понадобиться для потолочного перекрытия.

Чтобы избежать лишних затрат и лишнего веса каркаса потолка, а также не допустить обрушения или значительного прогиба балок, необходимо заранее рассчитать их параметры и по результатам расчета подобрать нужный прокат. Расчет сводится к вычислению следующих величин: требуемого момента сопротивления и минимального момента инерции сечения балки, а исходя из последнего – максимального относительного прогиба.

Расчет ведется по двум характеристикам – на прочность и на жесткость. По полученным значениям момента сопротивления и момента инерции в таблицах ГОСТ находят требуемый номер проката.

Исходные данные для расчетов

Для каркаса потолочных перекрытий малогабаритных частных домов обычно используется двутавр 10 – 20 номеров. Характеристики этих профилей приводятся в ГОСТ 8239-72 – их линейные размеры, площади сечения, максимальные моменты сопротивления по вертикали Wy и минимальные моменты инерции Jy.

Необходимо знать тип плит, которые будут опираться на балочный каркас, а также размеры несущего периметра дома. Можно применить пустотные железобетонные плиты ПК-12-10-8 (1180 х 990 мм, масса 380 кг), а размеры дома взять 4,5 х 6 м. Балки укладываются вдоль короткой стены; шаг укладки при таком размере плит равен 1000 мм (стыки плит совпадают с продольными осями балок, при минимальном зазоре 1 см). Это потребуется для расчета распределенной нагрузки, и исходя из нее – линейной нагрузки на балку, вес самой балки по сравнению с распределенной нагрузкой мал, и при вычислении линейной нагрузки им можно пренебречь.

Распределенная нагрузка при таком типе плит будет равна 325 кгс / м 2 . К этому надо добавить нагрузку возможных перегородок на верхней стороне перекрытия (75 кгс / м 2 ) и возможную временную нагрузку (200 кгс / м 2 ). В итоге нагрузка, распределенная по площади:

Q = 325 + 75 + 200 = 600 кгс / м 2 ,

а линейная нагрузка

q = Q * p = 600 кгс / м = 6 кгс / см.

Эта величина используется в дальнейших расчетах.

Расчет на прогиб

Изгибающий момент для каждой балки вычисляется, исходя из величины линейной нагрузки q, шага укладки балок p и длины перекрываемого пролета L. Так как балки укладываются вдоль короткой стороны, то L = 4,5 м = 450 см (конечно, сами балки длиннее – около 5 м, так как опираются на стены, но шарнирными опорами для них служат именно внутренние края стен).

Искомая величина момента, в таком случае:

My = (q * L 2 ) / 8 = 6 * 450 2 / 8 = 151875 кгс * см.

Максимальный момент сопротивления сечения балки можно рассчитать, разделив изгибающий момент на расчетное сопротивление стали – например, марки С235, равное 2150 кгс / см 2 :

Wy = 151875 / 2150 = 70,6 см 3 .

Это полученное значение надо сравнить с величиной момента сопротивления сечения двутавровой балки. Из таблицы ГОСТ 8239-72 видно, что вычисленный показатель примерно соответствует (с запасом) моменту сопротивления для профиля 14 (81,7 см 3) . Следовательно, этот номер проката будет удовлетворять требованиям к прочности балок.

Прогибы и перемещения

Нормы настоящего раздела устанавливают предельные прогибы и перемещения несущих и ограждающих конструкций зданий и сооружений при расчете по второй группе предельных состояний независимо от применяемых строительных материалов.

Нормы не распространяются на сооружения гидротехнические, транспорта, атомных электростанций, а также опор воздушных линий электропередачи, открытых распределительных устройств и антенных сооружений связи.

ОБЩИЕ УКАЗАНИЯ

10.1. При расчете строительных конструкций по прогибам (выгибам) и перемещениям должно быть выполнено условие

(25)

где f — прогиб (выгиб) и перемещение элемента конструкции (или конструкции в целом), определяемые с учетом факторов, влияющих на их значения, в соответствии с пп. 1-3 рекомендуемого приложения 6;

fu — предельный прогиб (выгиб) и перемещение, устанавливаемые настоящими нормами.

Расчет необходимо производить исходя из следующих требований:

а) технологических (обеспечение условий нормальной эксплуатации технологического и подъемно-транспортного оборудования, контрольно-измерительных приборов и т.д.);

б) конструктивных (обеспечение целостности примыкающих друг к другу элементов конструкций и их стыков, обеспечение заданных уклонов);

в) физиологических (предотвращение вредных воздействий и ощущений дискомфорта при колебаниях);

г) эстетико-психологических (обеспечение благоприятных впечатлений от внешнего вида конструкций, предотвращение ощущения опасности).

Каждое из указанных требований должно быть выполнено при расчете независимо от других.

Ограничения колебаний конструкций следует устанавливать в соответствии с нормативными документами п. 4 рекомендуемого приложения 6.

10.2. Расчетные ситуации, для которых следует определять прогибы и перемещения, соответствующие им нагрузки, а также требования, касающиеся строительного подъема, приведены в п. 5 рекомендуемого .

10.3. Предельные прогибы элементов конструкций покрытий и перекрытий, ограничиваемые исходя из технологических, конструктивных и физиологических требований, следует отсчитывать от изогнутой оси, соответствующей состоянию элемента в момент приложения нагрузки, от которой вычисляется прогиб, а ограничиваемые исходя из эстетико-психологических требований — от прямой, соединяющей опоры этих элементов (см. также п. 7 рекомендуемого приложения 6).

10.4. Прогибы элементов конструкций не ограничиваются исходя из эстетико-психологических требований, если не ухудшают внешний вид конструкций (например, мембранные покрытия, наклонные козырьки, конструкции с провисающим или приподнятым нижним поясом) или если элементы конструкций скрыты от обзора. Прогибы не ограничиваются исходя из указанных требований и для конструкций перекрытий и покрытий над помещениями с непродолжительным пребыванием людей (например, трансформаторных подстанций, чердаков).

Примечание. Для всех типов покрытий целостность кровельного ковра следует обеспечивать, как правило, конструктивными мероприятиями (например, использованием компенсаторов, созданием неразрезности элементов покрытия), а не повышением жесткости несущих элементов.

10.5. Коэффициент надежности по нагрузке для всех учитываемых нагрузок и коэффициент динамичности для нагрузок от погрузчиков, электрокаров, мостовых и подвесных кранов следует принимать равными единице.

Коэффициенты надежности по ответственности необходимо принимать в соответствии с обязательным приложением 7.

10.6. Для элементов конструкций зданий и сооружений, предельные прогибы и перемещения которых не оговорены настоящим и другими нормативными документами, вертикальные и горизонтальные прогибы и перемещения от постоянных, длительных и кратковременных нагрузок не должны превышать 1/150 пролета или 1/75 вылета консоли.

ВЕРТИКАЛЬНЫЕ ПРЕДЕЛЬНЫЕ ПРОГИБЫ ЭЛЕМЕНТОВ КОНСТРУКЦИЙ

10.7. Вертикальные предельные прогибы элементов конструкций и нагрузки, от которых следует определять прогибы, приведены в табл. 19. Требования к зазорам между смежными элементами приведены в п. 6 рекомендуемого приложения 6.

Вертикальные предельные прогибы fu

Нагрузки для определения вертикальных прогибов

1. Балки крановых путей под мостовые и подвесные краны, управляемые:

с пола, в том числе тельферы (тали)

От одного крана

из кабины при группах режимов работы (по ГОСТ 25546-82):

buildingbook.ru

Информационный блог о строительстве зданий

  • Home
  • /
  • Стальные конструкции
  • /
  • Расчет балки

Расчет балки

При расчете стальных балок необходимо руководствоваться СП 16.13330 «Стальные конструкции».

В данном обзоре я рассмотрю расчет балок 1-го класса напряженно-деформированного состояния (напряжения по всей площади напряжения не превышают расчетного сопротивления стали). Расчёт подкрановых, бистальных, защемленных и многопролетных балок будет рассмотрен отдельно.

Элементы конструкции должны иметь запас прочности по 1-му и 2-му предельному состоянию.

По 1-му предельному состоянию проверяется прочность элементов. Нагрузки для расчета по 1-му предельному состоянию выше, чем по 2-му предельному состоянию т.к. используются коэффициенты запаса для нагрузок.

По 2-му предельному состоянию проверяются деформации конструкции.

Расчеты по 1-му предельному состоянию:

  1. Расчет на прочность при действии изгибающего момента
  2. Расчет на прочность при действии поперечной силы
  3. Расчет на прочность стенки балки при действии сосредоточенной силы
  4. Расчет на прочность в опорном сечении
  5. Расчет на общую устойчивость
  6. Расчет на устойчивость стенок и поясных листов балки

Расчеты по 2-му предельному состоянию:

  1. Расчет прогиба балки

1. Расчет на прочность при действии изгибающего момента

В первую очередь необходимо подобрать балку по изгибающему моменту.

Прочность стальной балки на изгиб проверяется по следующей формуле (п.8.2.1 СП 16.13330.2011 или 5.12 СНиП II-23-81*):

где M – максимальный момент, возникающий в балке (находится по эпюре моментов);

Wn,min – момент сопротивления сечения (находится по таблице или вычисляется для данного профиля), у сечения обычно 2-а момента сопротивления сечения, в расчетах используется Wx если нагрузка перпендикулярна оси х-х профиля или Wy если нагрузка перпендикулярна оси y-y;

Ry – расчетное сопротивление стали при изгибе (задается в соответствии с выбором стали);

γc – коэффициент условий работы (данный коэффициент можно найти в таблице 1 СП 16.13330.2011 Стальные конструкции либо таблице 6* СНиП II-23-81) для балок сплошного сечения коэффициент равен 0,9, при расчете по сечению, ослабленному отверстиями 1,1.

Из этой формулы можно вычислить минимально требуемый момент сопротивления сечения.

Вначале вычисляем максимальный момент от нагрузок. На этом этапе мы еще не знаем массу балки и ее можно не учитывать при предварительном расчете.

Далее выбираем марку стали. При выборе марки стали необходимо учитывать класс конструкции и климатические условия эксплуатации – если конструкция эксплуатируется в холодном климате в неотапливаемом здании, то марка стали не должна быть хрупкой. Прочность стали выбирается исходя из экономического расчета – несмотря на то, что с увеличением марки стали ее стоимость увеличивается, сечение балки из более прочной стали может быть меньше и соответственно будут меньше нагрузки. Для того, чтобы выбрать оптимальную марку стали необходимо сделать несколько расчетов и оценить их.

После того, как мы предварительно рассчитали минимальный момент сопротивления сечения (Wn) подбираем из сортамента профиль, имеющий W не много выше чем требуемый и имеющий наименьшую массу. Для балок оптимальным профилем является двутавр, швеллер. Возможно использование составного сечения из листов. При расчете важно правильно учесть положение профиля – Wx используется, если ось x-x перпендикулярна направлению приложения нагрузки. Соответственно профиль необходимо располагать так, чтобы момент сопротивления сечения был максимальным (от того как расположить профиль многое зависит).

После выбора сечения необходимо прибавить к изгибающему моменту момент, создаваемый массой балки и вновь проверить сечение.

Если балка расположена под углом, то расчет прочности при изгибе производят по следующей формуле:

где требуется разложить силу на направляющие по оси х-х и у-у и отдельно вычислить максимальные моменты Mx и My вокруг оси х-х и у-у соответственно.

В СП 16.13330.2011 дополнительно требуют учитывать бимомент, формула выглядит следующим образом:

x и y — расстояния от главных осей до рассматриваемой точки;

Ixn,Iyn — моменты инерции сечения, находятся по таблице согласно ГОСТ-у на выбранный профиль;

Iω — секториальный момент инерции сечения, можно найти в приложении 3 руководства по подбору сечений стальных конструкций;

ω — секториальная площадь.

Здесь рассматриваются несколько точек, как правило 4 крайние точки профиля и для них проверяют условия, знаки подбирают согласно эпюрам напряжения. Подробно расчет профилей с учетом бимомента расписано в книге Д.В.Бычкова Строительная механика стержневых тонкостенных конструкций.

Для прогонов наклонной кровли из швеллера для упрощения расчета бимомент можно не учитывать т.к. он разгружает профиль на 10-15%, и это будет запасом прочности. В других случаях рекомендуется принимать конструктивные меры препятствующие возникновению закручивающего момента.

2. Расчет на прочность при действии поперечной силы

Далее необходимо проверить профиль на действие касательных (поперечных) сил по формуле:

где Q – наибольшая поперечная сила (можно определить согласно эпюре Q), для балки наибольшее значение получается на опорах;

S – статический момент сдвигаемой части сечения (определяется по таблице для выбранного профиля);

I – момент инерции сечения (определяется по таблице для выбранного профиля);

tw – толщина стенки балки;

Rs — расчетное сопротивление стали сдвигу, равно 0,58 от Ry согласно Таблице 2 СП 16.13330.2011;

γc – коэффициент условий работы (данный коэффициент можно найти в таблице 1 СП Стальные конструкции) для балок сплошного сечения коэффициент равен 0,9, при расчете по сечению, ослабленному отверстиями 1,1.

Если профиль не удовлетворяет условию, то необходимо увеличить сечение.

3. Расчет на прочность стенки балки при действии сосредоточенной силы

Расчет на прочность стенки балки, не укрепленной ребрами жесткости, при действии сосредоточенной силы и в опорных сечениях определяют по формуле:

здесь F – расчетное значение нагрузки;

lef – условная длина распределения нагрузки;

tw – толщина стенки балки.

Условную длину распределения нагрузки можно определить по формуле

для следующих случаев:

для прокатной балки:

где b – ширина полки швеллера

h – сумма толщины верхней полки и радиуса закругления

для сварной балки:

где h – сумма толщины верхней полки и катета сварного шва.

4. Расчет на прочность в опорном сечении

Расчет на прочность в опорном сечении балки (при Mx=0 и My=0) следует определять по формулам:

где Aw– площадь сечения стенки,

Af– площадь сечения полки,

Rs–расчетное сопротивление стали сдвигу.

При ослаблении стенки отверстиями для болтов левую часть формулы необходимо умножить на коэффициент α, который находиться по формуле:

где s – шаг отверстий в одном ряду;

d – диаметр отверстия.

Расчет на прочность для защемленных и неразрезных балок мы рассмотрим отдельно.

5. Расчет на общую устойчивость

Далее необходимо проверить балку на устойчивость.

Данный расчет можно не выполнять:

а) при передаче нагрузки через сплошной жесткий настил (плиты железобетонные, плоский или профилированный металлический настил, волнистая сталь и т.п.), непрерывно опирающийся на сжатый пояс балки и надежно с ним связанный (с помощью сварки, болтов, самонарезающих винтов), при этом силы трения учитывать не стоит;

б) если условная гибкость сжатого пояса балки меньше предельных значений. Условная гибкость вычисляется по формуле:

Предельное значение гибкости пояса вычисляется по формулам:

при приложении нагрузке к верхнему поясу

при приложении нагрузке к нижнему поясу

независимо от уровня приложения нагрузки при расчете участка балки между связями или при чистом изгибе

где b – ширина сжатого пояса;

t – толщина сжатого пояса;

h – расстояние (высота) между осями поясных листов.

    Значения предельной гибкости определены при 1≤ h/b ≤6 и 15≤ b/t ≤35; для балок с отношением b/t Построение эпюр балки

Как правильно закрепить балку на колонне читайте в статье Опорные узлы балки

Как рассчитать балку в SCAD и подобрать сечение читайте в статье Расчет балки в SCAD

Автор Редактор контента
11.08.2008 г.
10.7.

Вертикальные предельные прогибы элементов конструкций и нагрузки, от которых следует определять прогибы, приведены в табл. 19. Требования к зазорам между смежными элементами приведены в п. 6 рекомендуемого приложения 6.

Вертикальные предельные прогибы fu

Нагрузки для определения вертикальных прогибов

1. Балки крановых путей под мостовые и подвесные краны, управляемые:

с пола, в том числе тельферы (тали)

От одного крана

из кабины при группах режимов работы (по ГОСТ 25546—82):

Физиологические и технологические

2. Балки, фермы, ригели, прогоны, плиты, настилы (включая поперечные ребра плит и настилов):

а) покрытий и перекрытий, открытых для обзора, при пролете l

Постоянные и временные длительные

б) покрытий и перекрытий при наличии перегородок под ними

Принимаются в соответствии с п. 6 рекомендуемого приложения 6

Приводящие к уменьшению зазора между несущими элементами конструкций и перегородками, расположенными под элементами

в) покрытий и перекрытий при наличии на них элементов, подверженных растрескиванию (стяжек, полов, перегородок)

Действующие после выполнения перегородок, полов, стяжек

г) покрытий и перекрытий при наличии тельферов (талей), подвесных кранов, управляемых:

/300 или
а
/150 (меньшее из двух)

Временные с учетом нагрузки от одного крана или тельфера (тали) на одном пути

/400 или
а
/200 (меньшее из двух)

От одного крана или тельфера (тали) на одном пути

д) перекрытий, подверженных действию:

Физиологические и технологические

перемещаемых грузов, материалов, узлов и элементов оборудования и других подвижных нагрузок (в том числе при безрельсовом напольном транспорте)

0,7 полных нормативных значений временных нагрузок или нагрузки от одного погрузчика (более неблагоприятное из двух)

нагрузок от рельсового транспорта:

От одного состава вагонов (или одной напольной машины) на одном пути

3. Элементы лестниц (марши, площадки, косоуры), балконов, лоджий

Те же, что в поз. 2, а

Определяются в соответствии с п. 10.10

4. Плиты перекрытий, лестничные марши и площадки, прогибу которых не препятствуют смежные элементы

Сосредоточенная нагрузка 1 кН (100 кгс) в середине пролета

5. Перемычки и навесные стеновые панели над оконными и дверными проемами (ригели и прогоны остекления)

Приводящие к уменьшению зазора между несущими элементами и оконным или дверным заполнением, расположенным под элементами

Те же, что в поз. 2, а

Обозначения, принятые в табл. 19:

расчетный пролет элемента конструкции;

— шаг балок или ферм, к которым крепятся подвесные крановые пути.

Примечания: 1. Для консоли вместо l

следует принимать удвоенный ее вылет.

2. Для промежуточных значений l

в поз. 2,
а
предельные прогибы следует определять линейной интерполяцией, учитывая требования п. 7 рекомендуемого приложения б.

3. В поз. 2, а

цифры, указанные в скобках, следует принимать при высоте помещений до 6 м включительно.

4. Особенности вычисления прогибов по поз. 2, г

указаны в п. 8 рекомендуемого приложения 6.

5. При ограничении прогибов эстетико-психологическими требованиями допускается пролет l

принимать равным расстоянию между внутренними поверхностями несущих стен (или колонн).

Расстояние (зазор) от верхней точки тележки мостового крана до нижней точки прогнутых несущих конструкций покрытий (или предметов, прикрепленных к ним) должно быть не менее 100 мм.

Прогибы элементов покрытий должны быть такими, чтобы, несмотря на их наличие, был обеспечен уклон кровли не менее 1/200 в одном из направлений (кроме случаев, оговоренных в других нормативных документах).

Предельные прогибы элементов перекрытый (балок, ригелей, плит), лестниц, балконов, лоджий, помещений жилых и общественных зданий, а также бытовых помещений производственных зданий исходя из физиологических требований следует определять по формуле

— ускорение свободного падения;

нормативное значение нагрузки от людей, возбуждающих колебания, принимаемое по табл. 20;

1

пониженное нормативное значение нагрузки на перекрытия, принимаемое по табл. 3 и 20;

нормативное значение нагрузки от веса рассчитываемого элемента и опирающихся на него конструкций;

частота приложения нагрузки при ходьбе человека, принимаемая по табл. 20;

— коэффициент, принимаемый по табл. 20.

Определение прогиба деревянной балки согласно СП 64.13330.2011

Конечно же, будь моя воля, я бы, перед тем как приводить формулу для определения прогиба изгибаемых элементов с учетом действия поперечных сил, сначала привел бы упрощенную формулу определения прогиба с соответствующим пояснением, что ей можно пользоваться для приблизительного определения прогиба при соотношениях высоты балки к длине h/l

Для того чтобы оценить запись, вы должны быть зарегистрированным пользователем сайта.
Загрузка...

Добавить комментарий

Ваш адрес email не будет опубликован.